精英家教网 > 高中数学 > 题目详情
5.过点P(1,t)作曲线y=x3-3x的切线,若这样的切线恰好能做2条,则实数t的值为-3或-2.

分析 设切点为(a,a3-3a),利用导数的几何意义,求得切线的斜率k=f′(a),利用点斜式写出切线方程,将点AP代入切线方程,可得关于a的方程有两个不同的解,利用参变量分离可得2a3-3a2=-3-t,令g(x)=2x3-3x2,利用导数求出g(x)的单调性和极值,则根据y=g(x)与y=-3-t有两个不同的交点,即可得到实数t的值.

解答 解:设切点为(a,a3-3a),
∵f(x)=x3-3x,
∴f'(x)=3x2-3,
∴切线的斜率k=f′(a)=3a2-3,
由点斜式可得切线方程为y-(a3-3a)=(3a2-3)(x-a),
∵切线过点P(1,t),
∴t-(a3-3a)=(3a2-3)(1-a),即2a3-3a2=-3-t,
∵过点P(1,t)可作曲线y=f(x)的切线恰好能做2条,
∴关于a的方程2a3-3a2=-3-t有两个不同的根,
令g(x)=2x3-3x2
∴g′(x)=6x2-6x=0,解得x=0或x=1,
当x<0时,g′(x)>0,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,
∴g(x)在(-∞,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,
∴当x=0时,g(x)取得极大值g(0)=0,
当x=1时,g(x)取得极小值g(1)=-1,
关于a的方程2a3-3a2=-3-t有两个不同的根,等价于y=g(x)与y=-3-t的图象有两个不同的交点,
∴-3-t=-1或-3-t=0,
∴t=-2或t=-3.
故答案为:-3或-2.

点评 本题考查了利用导数研究曲线上某点切线方程.导数的几何意义即在某点处的导数即该点处切线的斜率,解题时要注意运用切点在曲线上和切点在切线上.运用了转化的数学思想方法,对能力要求较高.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在一次小型抽奖活动中,抽奖规则如下:一个不透明的口袋中共有6个大小相同的球,它们是1个红球,1个黄球,和4个白球,从中抽到红球中50元,抽到黄球中10元,抽到白球不中奖.某人从中一次性抽出两球,求:
(1)该人中奖的概率;
(2)该人获得的总奖金X(元)的分布列和均值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.甲、乙、丙、丁四支足球队举行“贺岁杯”足球友谊赛,每支球队都要与其它三支球队进行比赛,且比赛要分出胜负.若甲、乙、丙队的比赛成绩分别是两胜一负、全败、一胜两负,则丁队的比赛成绩是全胜.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某生产基地有五台机器设备,现有五项工作待完成,每台机器完成每项工作获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列描述正确的是②⑤ 
①甲只能承担第四项工作
②乙不能承担第二项工作
③丙可以不承担第三项工作
④丁可以承担第三项工作
⑤戊可以承担第四项工作
请把描述正确说法的代号写到横线上.
工作
效益
机器
1517141715
2223212020
913141210
7911911
1315141511

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设E为?ABCD所在平面内一点,满足$\overrightarrow{CE}$=$\frac{1}{2}$$\overrightarrow{ED}$,则$\overrightarrow{AE}$=(  )
A.$\frac{5}{6}$$\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{BD}$B.$\frac{1}{6}$$\overrightarrow{AC}$+$\frac{5}{6}$$\overrightarrow{BD}$C.-$\frac{5}{6}$$\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{BD}$D.$\frac{5}{6}$$\overrightarrow{AC}$-$\frac{1}{6}$$\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=(x-a)|x|(a∈R)存在反函数f-1(x),则f(1)+f-1(4)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.比较下列各组数的大小:
(1)($\frac{5}{6}$)-0.24与($\frac{5}{6}$)${\;}^{-\frac{1}{4}}$
(2)($\frac{1}{π}$)与1
(3)(0.18)-2与($\frac{5}{4}$)${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex+2ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(Ⅰ)求a的值及函数f(x)的极值;
(Ⅱ)证明:当x>0时,x2+1<ex

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=(sinx+cosx)2+cos2x的最小正周期为π.

查看答案和解析>>

同步练习册答案