分析 (1)法一:由已知利用对立事件概率计算公式能求出该人中奖的概率.
法二:由已知利用互事件概率计算公式能求出该顾客中奖的概率.
(2)X的所有可能值为0,10,50,60,分别求出相应的概率,由此能求出X的分布列和数学期望.
解答 解:(1)方法一:设“该人中奖”为事件A,
则$P(A)=1-P(\overline A)=1-\frac{C_4^2}{C_6^2}=1-\frac{6}{15}=\frac{3}{5}$
方法二:$P(A)=\frac{C_2^2+C_2^1C_4^1}{C_6^2}=\frac{1+8}{15}=\frac{3}{5}$…(3分)
即该顾客中奖的概率为$\frac{3}{5}$.…(4分)
(2)X的所有可能值为0,10,50,60…(5分)
$P(X=0)=\frac{C_4^2}{C_6^2}=\frac{2}{5}$,
$P(X=10)=\frac{C_4^1C_1^1}{C_6^2}=\frac{4}{15}$,
$P(X=50)=\frac{C_4^1C_1^1}{C_6^2}=\frac{4}{15}$,
$P(X=60)=\frac{C_1^1C_1^1}{C_6^2}=\frac{1}{15}$,…(7分)
故X的分布列如下.
| X | 0 | 10 | 50 | 60 |
| P | $\frac{2}{5}$ | $\frac{4}{15}$ | $\frac{4}{15}$ | $\frac{1}{15}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -3 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com