精英家教网 > 高中数学 > 题目详情
1.马路上有编号1,2,3,…,10共10盏灯,现要关掉其中的四盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,则满足条件的关灯方案有20种.

分析 先将亮的7盏灯排成一排,所以有6个符合条件的空位,即可得到结论.

解答 解:因为关掉的三盏灯不是两端的灯,且任意两盏都不相邻,
所以我使用插空法解决问题,即先将亮的7盏灯排成一排,
因为两端的灯不能熄灭,
所以有6个符合条件的空位,
所以在6个空位中选取3个位置插入熄灭的3盏灯,即有C63=20种.
故答案为:20

点评 本题主要考查排列组合的应用,解决此类常用的方法是:特殊元素与特殊位置优先;相邻问题用捆绑的方法;不相邻问题用插空的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知cosα=$\frac{4}{5}$,α是第四象限角,则sin(2π-α)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.±$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从重量分别为1,2,3,4,…,10,11克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为10克的方法总数为m,下列各式的展开式中x10的系数为m的选项是(  )
A.(1+x)(1+x2)(1+x3)…(1+x11
B.(1+x)(1+2x)(1+3x)…(1+11x)
C.(1+x)(1+2x2)(1+3x3)…(1+11x11
D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是$\frac{1}{2}$-$\frac{1}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线$\sqrt{3}$x+y-$\sqrt{3}$=0经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点和上顶点.
(1)求椭圆C的标准方程;
(2)过点(0,-2)的直线l与椭圆C交于不同的A,B两点,若∠AOB为钝角,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.5名学生4名老师站成一排合影,5名学生站一起的排法种数为(  )
A.$A_5^5A_5^5$B.$A_4^4A_6^6$C.$A_4^4A_5^5$D.$A_5^5A_6^4$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在一次小型抽奖活动中,抽奖规则如下:一个不透明的口袋中共有6个大小相同的球,它们是1个红球,1个黄球,和4个白球,从中抽到红球中50元,抽到黄球中10元,抽到白球不中奖.某人从中一次性抽出两球,求:
(1)该人中奖的概率;
(2)该人获得的总奖金X(元)的分布列和均值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.小明为了更好地把握回归分析的知识,他试图用流程图形象地表示建立回归模型的过程:

则最适合填写流程图中空白框的一项是(  )
A.预报B.计算真实值yC.比较模型效果D.残差异常分析

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某生产基地有五台机器设备,现有五项工作待完成,每台机器完成每项工作获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列描述正确的是②⑤ 
①甲只能承担第四项工作
②乙不能承担第二项工作
③丙可以不承担第三项工作
④丁可以承担第三项工作
⑤戊可以承担第四项工作
请把描述正确说法的代号写到横线上.
工作
效益
机器
1517141715
2223212020
913141210
7911911
1315141511

查看答案和解析>>

同步练习册答案