12£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚ×ø±êÔ­µãO£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬µãAʱÍÖÔ²CÉÏÈÎÒ»µã£¬ÇÒ|AF1|•|AF2|µÄ×î´óֵΪ3£¬ÒÔÍÖÔ²CµÄÓÒ½¹µãΪԲÐÄ£¬½¹¾àΪֱ¾¶µÄÔ²ÓëÖ±Ïßl1£ºx+$\sqrt{3}$y+1=0ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©²»¹ýÔ­µãµÄÖ±Ïßl2ÓëÍÖÔ²C½»ÓÚP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©Á½¸ö²»Í¬µã£¬ÒÔOP£¬OQΪÁÚ±ß×÷?OQNP£¬µ±?OQNPµÄÃæ»ýΪ$\sqrt{6}$ʱ£¬Ö¤Ã÷£º|ON|2+|PQ|2Ϊ¶¨Öµ£®

·ÖÎö £¨1£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£®Éè|AF1|=m£¬|AF2|=n£¬Ôòmn¡Ü3£¬ÓÉÓÚm+n=2a£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖÊ£ºa2=3£®ÓÉÓÚÒÔÍÖÔ²CµÄÓÒ½¹µãΪԲÐÄ£¬½¹¾àΪֱ¾¶µÄÔ²ÓëÖ±Ïßl1£ºx+$\sqrt{3}$y+1=0ÏàÇУ®¿ÉµÃ$\frac{|c+1|}{2}$=c£¬c£¾0£¬½âµÃc£¬¿ÉµÃb2=a2-c2£®
£¨2£©µ±Ö±Ïßl2µÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßl2µÄ·½³ÌΪy=kx+m£¬Ïß¶ÎPQµÄÖеãM£¨x0£¬y0£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨2+3k2£©x2+6kmx+3m2-6=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÆäÖеã×ø±ê¹«Ê½¿ÉµÃ£º|ON|2=4|OM|2=$4£¨{x}_{0}^{2}+{y}_{0}^{2}£©$£¬|PQ|2=£¨1+k2£©$[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]$£®Ô­µãOµ½Ö±ÏßPQµÄ¾àÀëd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬Æ½ÐÐËıßÐÎOQNPµÄÃæ»ýS=2¡Á$\frac{1}{2}$|PQ|•d=|PQ|•$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{6}$£¬¿ÉµÃ|PQ|2=$\frac{6£¨1+{k}^{2}£©}{{m}^{2}}$£®µÃµ½mÓëkµÄ¹ØÏµ£¬´úÈë|ON|2+|PQ|2£¬¼´¿ÉÖ¤Ã÷£®µ±Ö±Ïßl2µÄбÂʲ»´æÔÚʱ£¬Í¬Ñù³ÉÁ¢£®

½â´ð £¨1£©½â£ºÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£®
Éè|AF1|=m£¬|AF2|=n£¬Ôòmn¡Ü3£¬
¡ßm+n=2a¡Ý2$\sqrt{mn}$£¬µ±ÇÒ½öµ±m=nʱȡµÈºÅ£¬a2=3£®
¡ßÒÔÍÖÔ²CµÄÓÒ½¹µãΪԲÐÄ£¬½¹¾àΪֱ¾¶µÄÔ²ÓëÖ±Ïßl1£ºx+$\sqrt{3}$y+1=0ÏàÇУ®
¡à$\frac{|c+1|}{2}$=c£¬c£¾0£¬½âµÃc=1£¬
¡àb2=a2-c2=2£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1£®
£¨2£©Ö¤Ã÷£ºµ±Ö±Ïßl2µÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßl2µÄ·½³ÌΪy=kx+m£¬Ïß¶ÎPQµÄÖеãM£¨x0£¬y0£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬»¯Îª£º£¨2+3k2£©x2+6kmx+3m2-6=0£¬
¡÷£¾0£¬¿ÉµÃx1+x2=-$\frac{6km}{2+3{k}^{2}}$£¬x1x2=$\frac{3{m}^{2}-6}{2+3{k}^{2}}$£®
¡àx0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{-3km}{2+3{k}^{2}}$£¬y0=kx0+m=$\frac{2m}{2+3{k}^{2}}$£®
¡à|ON|2=4|OM|2=$4£¨{x}_{0}^{2}+{y}_{0}^{2}£©$=$\frac{4{m}^{2}£¨9{k}^{2}+4£©}{£¨2+3{k}^{2}£©^{2}}$£®
|PQ|2=£¨1+k2£©$[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]$=£¨1+k2£©$[\frac{36{k}^{2}{m}^{2}}{£¨2+3{k}^{2}£©^{2}}-\frac{4£¨3{m}^{2}-6£©}{2+3{k}^{2}}]$=$\frac{12£¨4+6{k}^{2}-2{m}^{2}£©}{£¨2+3{k}^{2}£©^{2}}$¡Á£¨1+k2£©£®
¡à|ON|2+|PQ|2=$\frac{12{m}^{2}{k}^{2}+120{k}^{2}+72{k}^{4}-8{m}^{2}+48}{£¨2+3{k}^{2}£©^{2}}$£®
Ô­µãOµ½Ö±ÏßPQµÄ¾àÀëd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬
ƽÐÐËıßÐÎOQNPµÄÃæ»ýS=2¡Á$\frac{1}{2}$|PQ|•d=|PQ|•$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{6}$£¬
¡à|PQ|2=$\frac{6£¨1+{k}^{2}£©}{{m}^{2}}$£®
¡à$\frac{12£¨4+6{k}^{2}-2{m}^{2}£©}{£¨2+3{k}^{2}£©^{2}}$¡Á£¨1+k2£©=$\frac{6£¨1+{k}^{2}£©}{{m}^{2}}$£¬»¯Îª£º2m2=2+3k2£®
´úÈë|ON|2+|PQ|2=$\frac{£¨2+3{k}^{2}£©£¨6{k}^{2}-4£©+120{k}^{2}+72{k}^{4}+48}{£¨2+3{k}^{2}£©^{2}}$=10£®
¡à|ON|2+|PQ|2Ϊ¶¨Öµ10£®
µ±Ö±Ïßl2µÄбÂʲ»´æÔÚʱ£¬Í¬Ñù³ÉÁ¢£®
×ÛÉϿɵãº|ON|2+|PQ|2Ϊ¶¨Öµ10£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ö±ÏßÓëÔ²ÏàÇÐÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Æ½ÐÐËıßÐεÄÃæ»ý¼ÆË㹫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¹«Ê½¡¢ÏÒ³¤¹«Ê½¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚ¡÷ABCÖУ¬ÒÑÖªa=1£¬b=$\sqrt{3}$£¬A=120¡ã£¬Ôò´ËÈý½ÇÐΣ¨¡¡¡¡£©
A£®ÎÞ½âB£®ÓÐÒ»½âC£®ÓÐÁ½½âD£®½âµÄ¸öÊý²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèµãA£¨-1£¬0£¬3£©£¬B£¨0£¬2£¬2£©£¬C£¨2£¬-2£¬-1£©£¬D£¨1£¬-1£¬1£©£¬ÇóÓë$\overrightarrow{AB}$£¬$\overrightarrow{CD}$¶¼´¹Ö±µÄµ¥Î»ÏòÁ¿£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬Ôڱ߳¤Îª2µÄÕý·½ÐÎABCDÖУ¬EΪÕý·½ÐαßÉϵ͝µã£¬ÏÖ½«¡÷ADEËùÔÚÆ½ÃæÑØAEÕÛÆð£¬Ê¹µãDÔÚÆ½ÃæABCÉϵÄÉäÓ°HÔÚÖ±ÏßAEÉÏ£¬µ±E´ÓµãDÔ˶¯µ½C£¬ÔÙ´ÓCÔ˶¯µ½B£¬ÔòµãHËùÐγɹ켣µÄ³¤¶ÈΪ¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}Âú×㣺$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+¡­+$\frac{1}{{a}_{n}}$=$\frac{{n}^{2}}{2}$£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn=anan+1£¬SnΪÊýÁÐ{bn}µÄǰnÏîºÍ£¬¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬Sn£¾2¦Ë-$\frac{1}{3}$ºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=ax+lnx£¨a¡ÊR£©£¬g£¨x£©=$\frac{{x}^{2}}{x-lnx}$£®
£¨1£©µ±a=1ʱ£¬Çóf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨2£©Èôh£¨x£©=f£¨x£©-g£¨x£©Ç¡ÓÐÈý¸ö²»Í¬µÄÁãµãx1£¬x2£¬x3£¨x1£¼x2£¼x3£©£®
¢ÙÇóʵÊýaµÄȡֵ·¶Î§£»
¢ÚÇóÖ¤£º£¨1-$\frac{ln{x}_{1}}{{x}_{1}}$£©2£¨1-$\frac{ln{x}_{2}}{{x}_{2}}$£©£¨1-$\frac{ln{x}_{3}}{{x}_{3}}$£©=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ä³¹«Ë¾ÎªÁ˽âÓû§¶ÔÆä²úÆ·µÄÂúÒâ¶È£¬´ÓijµØÇøËæ»úµ÷²éÁË100¸öÓû§£¬µÃµ½Óû§¶Ô²úÆ·µÄÂúÒâ¶ÈÆÀ·ÖƵÂÊ·Ö²¼±íÈçÏ£º
×é±ð·Ö×鯵ÊýƵÂÊ
µÚÒ»×飨50£¬60]100.1
µÚ¶þ×飨60£¬70]200.2
µÚÈý×飨70£¬80]400.4
µÚËÄ×飨80£¬90]250.25
µÚÎå×飨90£¬100£©50.05
ºÏ¼Æ1001
£¨1£©¸ù¾ÝÉÏÃæµÄƵÂÊ·Ö²¼±í£¬¹À¼Æ¸ÃµØÇøÓû§¶Ô²úÆ·µÄÂúÒâ¶ÈÆÀ·Ö³¬¹ý70·ÖµÄ¸ÅÂÊ£»
£¨2£©ÇëÓÉÆµÂÊ·Ö²¼±íÖÐÊý¾Ý¼ÆËãÖÚÊý¡¢ÖÐλÊý£¬Æ½¾ùÊý£¬¸ù¾ÝÑù±¾¹À¼Æ×ÜÌåµÄ˼Ï룬Èôƽ¾ù·ÖµÍÓÚ75·Ö£¬ÊÓΪ²»ÂúÒ⣮ÅжϸõØÇøÓû§¶Ô²úÆ·ÊÇ·ñÂúÒ⣿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô¦ÁÊǵÚÈýÏóÏ޽ǣ¬ÇÒ$cos\frac{¦Á}{2}£¾0$£¬Ôò$\frac{¦Á}{2}$ÊǵÚËÄÏóÏ޽ǣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=AD=1£¬AA1=2£¬¸ø³öÒÔÏÂÃüÌ⣺
¢ÙÖ±ÏßA1BÓëACËù³ÉµÄ½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{10}}{10}$£»
¢Ú¶¯µãMÔÚ±íÃæÉÏ´ÓµãAµ½µãC1¾­¹ýµÄ×î¶Ì·³ÌΪ$\sqrt{10}$£»
¢Û¸Ã³¤·½ÌåµÄÍâ½ÓÇòµÄ±íÃæ»ýΪ6¦Ð£»
ÔòÉÏÊöÃüÌâÖÐÕýÈ·µÄÓТ٢ۣ¨ÌîдËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸