·ÖÎö £¨1£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£®Éè|AF1|=m£¬|AF2|=n£¬Ôòmn¡Ü3£¬ÓÉÓÚm+n=2a£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖÊ£ºa2=3£®ÓÉÓÚÒÔÍÖÔ²CµÄÓÒ½¹µãΪԲÐÄ£¬½¹¾àΪֱ¾¶µÄÔ²ÓëÖ±Ïßl1£ºx+$\sqrt{3}$y+1=0ÏàÇУ®¿ÉµÃ$\frac{|c+1|}{2}$=c£¬c£¾0£¬½âµÃc£¬¿ÉµÃb2=a2-c2£®
£¨2£©µ±Ö±Ïßl2µÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßl2µÄ·½³ÌΪy=kx+m£¬Ïß¶ÎPQµÄÖеãM£¨x0£¬y0£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨2+3k2£©x2+6kmx+3m2-6=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÆäÖеã×ø±ê¹«Ê½¿ÉµÃ£º|ON|2=4|OM|2=$4£¨{x}_{0}^{2}+{y}_{0}^{2}£©$£¬|PQ|2=£¨1+k2£©$[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]$£®ÔµãOµ½Ö±ÏßPQµÄ¾àÀëd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬Æ½ÐÐËıßÐÎOQNPµÄÃæ»ýS=2¡Á$\frac{1}{2}$|PQ|•d=|PQ|•$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{6}$£¬¿ÉµÃ|PQ|2=$\frac{6£¨1+{k}^{2}£©}{{m}^{2}}$£®µÃµ½mÓëkµÄ¹ØÏµ£¬´úÈë|ON|2+|PQ|2£¬¼´¿ÉÖ¤Ã÷£®µ±Ö±Ïßl2µÄбÂʲ»´æÔÚʱ£¬Í¬Ñù³ÉÁ¢£®
½â´ð £¨1£©½â£ºÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£®
Éè|AF1|=m£¬|AF2|=n£¬Ôòmn¡Ü3£¬
¡ßm+n=2a¡Ý2$\sqrt{mn}$£¬µ±ÇÒ½öµ±m=nʱȡµÈºÅ£¬a2=3£®
¡ßÒÔÍÖÔ²CµÄÓÒ½¹µãΪԲÐÄ£¬½¹¾àΪֱ¾¶µÄÔ²ÓëÖ±Ïßl1£ºx+$\sqrt{3}$y+1=0ÏàÇУ®
¡à$\frac{|c+1|}{2}$=c£¬c£¾0£¬½âµÃc=1£¬
¡àb2=a2-c2=2£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1£®
£¨2£©Ö¤Ã÷£ºµ±Ö±Ïßl2µÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßl2µÄ·½³ÌΪy=kx+m£¬Ïß¶ÎPQµÄÖеãM£¨x0£¬y0£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬»¯Îª£º£¨2+3k2£©x2+6kmx+3m2-6=0£¬
¡÷£¾0£¬¿ÉµÃx1+x2=-$\frac{6km}{2+3{k}^{2}}$£¬x1x2=$\frac{3{m}^{2}-6}{2+3{k}^{2}}$£®
¡àx0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{-3km}{2+3{k}^{2}}$£¬y0=kx0+m=$\frac{2m}{2+3{k}^{2}}$£®
¡à|ON|2=4|OM|2=$4£¨{x}_{0}^{2}+{y}_{0}^{2}£©$=$\frac{4{m}^{2}£¨9{k}^{2}+4£©}{£¨2+3{k}^{2}£©^{2}}$£®
|PQ|2=£¨1+k2£©$[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]$=£¨1+k2£©$[\frac{36{k}^{2}{m}^{2}}{£¨2+3{k}^{2}£©^{2}}-\frac{4£¨3{m}^{2}-6£©}{2+3{k}^{2}}]$=$\frac{12£¨4+6{k}^{2}-2{m}^{2}£©}{£¨2+3{k}^{2}£©^{2}}$¡Á£¨1+k2£©£®
¡à|ON|2+|PQ|2=$\frac{12{m}^{2}{k}^{2}+120{k}^{2}+72{k}^{4}-8{m}^{2}+48}{£¨2+3{k}^{2}£©^{2}}$£®
ÔµãOµ½Ö±ÏßPQµÄ¾àÀëd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬
ƽÐÐËıßÐÎOQNPµÄÃæ»ýS=2¡Á$\frac{1}{2}$|PQ|•d=|PQ|•$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{6}$£¬
¡à|PQ|2=$\frac{6£¨1+{k}^{2}£©}{{m}^{2}}$£®
¡à$\frac{12£¨4+6{k}^{2}-2{m}^{2}£©}{£¨2+3{k}^{2}£©^{2}}$¡Á£¨1+k2£©=$\frac{6£¨1+{k}^{2}£©}{{m}^{2}}$£¬»¯Îª£º2m2=2+3k2£®
´úÈë|ON|2+|PQ|2=$\frac{£¨2+3{k}^{2}£©£¨6{k}^{2}-4£©+120{k}^{2}+72{k}^{4}+48}{£¨2+3{k}^{2}£©^{2}}$=10£®
¡à|ON|2+|PQ|2Ϊ¶¨Öµ10£®
µ±Ö±Ïßl2µÄбÂʲ»´æÔÚʱ£¬Í¬Ñù³ÉÁ¢£®
×ÛÉϿɵãº|ON|2+|PQ|2Ϊ¶¨Öµ10£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ö±ÏßÓëÔ²ÏàÇÐÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Æ½ÐÐËıßÐεÄÃæ»ý¼ÆË㹫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¹«Ê½¡¢ÏÒ³¤¹«Ê½¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÎÞ½â | B£® | ÓÐÒ»½â | C£® | ÓÐÁ½½â | D£® | ½âµÄ¸öÊý²»È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ×é±ð | ·Ö×é | ƵÊý | ƵÂÊ |
| µÚÒ»×é | £¨50£¬60] | 10 | 0.1 |
| µÚ¶þ×é | £¨60£¬70] | 20 | 0.2 |
| µÚÈý×é | £¨70£¬80] | 40 | 0.4 |
| µÚËÄ×é | £¨80£¬90] | 25 | 0.25 |
| µÚÎå×é | £¨90£¬100£© | 5 | 0.05 |
| ºÏ¼Æ | 100 | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com