精英家教网 > 高中数学 > 题目详情
18.如图,在边长为2的正方形ABCD中,E为正方形边上的动点,现将△ADE所在平面沿AE折起,使点D在平面ABC上的射影H在直线AE上,当E从点D运动到C,再从C运动到B,则点H所形成轨迹的长度为π.

分析 根据图形的翻折过程中变与不变的量和位置关系知,在平面AED内过点D作DH⊥AE,H为垂足,由翻折的特征知,连接D'H,则∠D'HA=90°,当E从点D运动到C,再从C运动到B,故H点的轨迹是以AD'为直径的半圆弧,根据长方形的边长得到圆的半径,利用弧长公式求出轨迹长度.

解答 解:由题意,在平面AED内过点D作DH⊥AE,H为垂足,由翻折的特征知,连接D'H.
则∠D'HA=90°,
当E从点D运动到C,再从C运动到B,故H点的轨迹是以AD'为直径的半圆弧,
根据边长为2的正方形ABCD知圆半径是1,
所以其所对的弧长为π,
故答案为:π

点评 本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点H的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变.本题是一个中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,AB为半圆ACB的水平直径,C为圆上的最低点,一小球从A点以速度v0被水平抛出后恰好落在C点,设重力加速度为g,不计空气阻力,求圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点O为△ABC的外心,且AC=4,AB=2,则$\overrightarrow{AO}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果对定义在R上的函数f(x)对任意两个不相等的实数x1,x2,都有(x1-x2)[f(x1)-f(x2)]>0,则称函数f(x)为“H函数”.给出下列函数①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④$f(x)=\left\{\begin{array}{l}ln|x|{\;}_{\;}^{\;}x≠0\\ 0{\;}_{\;}^{\;}{\;}_{\;}^{\;}x=0\end{array}\right.$.其中“H函数”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数u,v满足u>|v|,2u=3(u2-v2),则3u+v的取值范围是[$\frac{3+2\sqrt{2}}{3},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)=ex-e-x-ax(a∈R).
(Ⅰ)若f(x)在R上是单调函数,求实数a的取值范围;
(Ⅱ)证明:当x∈R时,ex+e-x≥x2+2;
(Ⅲ)证明:当x≥0时,对任意n∈N+,ex+e-x≥2+2[$\frac{{x}^{2}}{2!}$+$\frac{{x}^{4}}{4!}$+…+$\frac{{x}^{2n}}{(2n)!}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的中心在坐标原点O,左、右焦点分别为F1、F2,点A时椭圆C上任一点,且|AF1|•|AF2|的最大值为3,以椭圆C的右焦点为圆心,焦距为直径的圆与直线l1:x+$\sqrt{3}$y+1=0相切.
(1)求椭圆C的标准方程;
(2)不过原点的直线l2与椭圆C交于P(x1,y1),Q(x2,y2)两个不同点,以OP,OQ为邻边作?OQNP,当?OQNP的面积为$\sqrt{6}$时,证明:|ON|2+|PQ|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$tanα=\frac{1}{2}$,则$\frac{2sinα+cosα}{4sinα-cosα}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a>0,b<0,则下列不等式中正确的是(  )
A.a<bB.$\frac{1}{a}$<$\frac{1}{b}$C.a2>b2D.a3>b3

查看答案和解析>>

同步练习册答案