精英家教网 > 高中数学 > 题目详情
9.若$tanα=\frac{1}{2}$,则$\frac{2sinα+cosα}{4sinα-cosα}$=2.

分析 由条件利用同角三角函数的基本关系,求得所给式子的值.

解答 解:若$tanα=\frac{1}{2}$,则$\frac{2sinα+cosα}{4sinα-cosα}$=$\frac{2tanα+1}{4tanα-1}$=$\frac{1+1}{2-1}$=2,
故答案为:2.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=4x,过其焦点F作两条相互垂直且不平行于x轴的直线,分别交抛物线C于点P1,P2和点P3,P4,线段P1P2,P3P4的中点分别记为M1,M2
(Ⅰ)求△FM1M2面积的最小值:
(Ⅱ)求线段M1M2的中点P满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在边长为2的正方形ABCD中,E为正方形边上的动点,现将△ADE所在平面沿AE折起,使点D在平面ABC上的射影H在直线AE上,当E从点D运动到C,再从C运动到B,则点H所形成轨迹的长度为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax+lnx(a∈R),g(x)=$\frac{{x}^{2}}{x-lnx}$.
(1)当a=1时,求f(x)的单调增区间;
(2)若h(x)=f(x)-g(x)恰有三个不同的零点x1,x2,x3(x1<x2<x3).
①求实数a的取值范围;
②求证:(1-$\frac{ln{x}_{1}}{{x}_{1}}$)2(1-$\frac{ln{x}_{2}}{{x}_{2}}$)(1-$\frac{ln{x}_{3}}{{x}_{3}}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某公司为了解用户对其产品的满意度,从某地区随机调查了100个用户,得到用户对产品的满意度评分频率分布表如下:
组别分组频数频率
第一组(50,60]100.1
第二组(60,70]200.2
第三组(70,80]400.4
第四组(80,90]250.25
第五组(90,100)50.05
合计1001
(1)根据上面的频率分布表,估计该地区用户对产品的满意度评分超过70分的概率;
(2)请由频率分布表中数据计算众数、中位数,平均数,根据样本估计总体的思想,若平均分低于75分,视为不满意.判断该地区用户对产品是否满意?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.小明用流程图把早上上班前需要做的事情做了如图方案,则所用时间最少是(  )
A.23分钟B.24分钟C.26分钟D.31分钟

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若α是第三象限角,且$cos\frac{α}{2}>0$,则$\frac{α}{2}$是第四象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某青年教师近五年内所带班级的数学平均成绩统计数据如下(满分均为150分):
年份x年20112012201320142015
平均成绩y分9798103108109
(Ⅰ)利用所给数据,求出平均分与年份之间的回归直线方程$\widehat{y}$=bx+a,并判断它们之间是正相关还是负相关.
(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该教师2016年所带班级的数学平均成绩.
(Ⅲ)能否利用该回归方程估计该教师2030年所带班级的数学平均成绩?为什么?
(b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α∈($\frac{π}{2}$,π),sin(π+α)=-$\frac{3}{5}$,则tan(α-$\frac{π}{4}$)等于(  )
A.-7B.-$\frac{1}{7}$C.7D.$\frac{1}{7}$

查看答案和解析>>

同步练习册答案