精英家教网 > 高中数学 > 题目详情
10.若a>0,b<0,则下列不等式中正确的是(  )
A.a<bB.$\frac{1}{a}$<$\frac{1}{b}$C.a2>b2D.a3>b3

分析 由于a>0,b<0,可得a>b,$\frac{1}{a}>\frac{1}{b}$,a2与b2大小关系不确定.对于D:令f(x)=x3,利用导数研究其单调性即可判断出正误.

解答 解:∵a>0,b<0,
∴a>b,$\frac{1}{a}>\frac{1}{b}$,a2与b2大小关系不确定,因此A,B,C不正确.
对于D:令f(x)=x3,则f′(x)=3x2≥0,∴函数f(x)在R上单调递增,又a>0>b,∴a3>b3
故选:D.

点评 本题考查了不等式的性质、利用导数研究其单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.如图,在边长为2的正方形ABCD中,E为正方形边上的动点,现将△ADE所在平面沿AE折起,使点D在平面ABC上的射影H在直线AE上,当E从点D运动到C,再从C运动到B,则点H所形成轨迹的长度为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若α是第三象限角,且$cos\frac{α}{2}>0$,则$\frac{α}{2}$是第四象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某青年教师近五年内所带班级的数学平均成绩统计数据如下(满分均为150分):
年份x年20112012201320142015
平均成绩y分9798103108109
(Ⅰ)利用所给数据,求出平均分与年份之间的回归直线方程$\widehat{y}$=bx+a,并判断它们之间是正相关还是负相关.
(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该教师2016年所带班级的数学平均成绩.
(Ⅲ)能否利用该回归方程估计该教师2030年所带班级的数学平均成绩?为什么?
(b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和Sn满足Sn=n2+n,数列{bn}满足b1=1,bn+1=($\sqrt{2}$)an
(1)求数列{an},{bn}的通项公式;
(2)若数列{an}满足cn=an(bn+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=sinx在x=0处的切线的倾斜角是(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,给出以下命题:
①直线A1B与AC所成的角的余弦值为$\frac{\sqrt{10}}{10}$;
②动点M在表面上从点A到点C1经过的最短路程为$\sqrt{10}$;
③该长方体的外接球的表面积为6π;
则上述命题中正确的有①③(填写所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α∈($\frac{π}{2}$,π),sin(π+α)=-$\frac{3}{5}$,则tan(α-$\frac{π}{4}$)等于(  )
A.-7B.-$\frac{1}{7}$C.7D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“-2<k<3“是“x2+kx+1>0在 R上恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案