精英家教网 > 高中数学 > 题目详情
20.已知实数x,y满足条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤3\\ x-y≤0\end{array}\right.$,则3x+y的最大值为4.

分析 作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最大值.

解答 解:作出不等式对应的平面区域如图,
设z=3x+y,得y=-3x+z,
平移直线y=-3x+z,由图象可知当直线y=-3x+z,经过点A时,直线y=-3x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{2x+y=3}\\{x-y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$.即A(1,1),
此时z的最大值为z=3×1+1=4,
故答案为:4;

点评 本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设m,n为两条不同的直线,α,β为两个不重合的平面,给出下列四个判断
①α∥β,m?α,n?β⇒则m∥n;
②α⊥β,m⊥α,n⊥β⇒m⊥n;
③正方形ABCD-A1B1C1D1中,M是C1C的中点,O是底面ABCD的中心,P是A1B1上的任意点,则直线BM与OP所成的角为定值$\frac{π}{2}$;
④空间四边形PABC的各边及对角线长度都相等,D、E分别是AB、BC的中点,则平面PDE⊥平面ABC.
其中正确的是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设二次函数y=f(x)的最小值为-2,且满足f(3)=f(-1)=2.
(1)求f(x)的解析式;
(2)解不等式f(2t2-4t+3)>f(t2+t+3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在矩形ABCD中,点A在x轴上,点B的坐标为(2,0)且点C与点D在函数f(x)=$\left\{\begin{array}{l}{x+1,x≥0}\\{-\frac{1}{2}x+1,x<0}\end{array}\right.$的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0)
(1)若直线l1与圆相切,切点为B,求线段AB的长度;
(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM•AN是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}满足:a1•a2+a2•a3+a3•a4+…+an•an+1=$\frac{{A{n^3}+B{n^2}+2n}}{3}$,且a1=1,a2=2,a3=3.
(1)求A,B值;
(2)证明:{an}是等差数列;
(3)已知bn=2an,若满足ai<m,bj<m,且存在ai,bj使得ai+bj=m成立的所有ai,bj之和记为S(m),则当n≥2,n∈N*时,求S(22)+S(23)+S(24)+…+S(2n).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$(n2+3n).(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设锐角△ABC的内角A,B,C所对边的长分别为a,b,c,且有2asinB-$\sqrt{3}$•b=0.
(1)求角A的大小;
(2)若b+c=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C的两个焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),短轴的两个端点分别为B1、B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)在(1)的条件下,过点F2的直线l与椭圆C相交于P,Q两点,且l的斜率为1,求|PQ|的长.

查看答案和解析>>

同步练习册答案