精英家教网 > 高中数学 > 题目详情
2.广播电台为了了解某地区的听众对某个戏曲节目的收听情况,随机抽取了100名听众进行调查,下面是根据调查结果绘制的听众日均收听该节目的频率分布直方图,将日均收听该节目时间不低于40分钟的听众成为“戏迷”
(Ⅰ)根据已知条件完成2×2列联表,并判断“戏迷”与性别是否有关?
“戏迷”非戏迷总计
1055
总计
附:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$,
 P(K2≥k) 0.05 0.01
 k 3.841 6.635
(Ⅱ)将上述调查所得到的频率当作概率.现在从该地区大量的听众中,采用随机抽样的方法每次抽取1名听众,抽取3次,记被抽取的3名听众中“戏迷”的人数为X,若每次抽取的结果相互独立,求X的分布列,数学期望及方差.

分析 (Ⅰ)由频率分布直方图求得“戏迷”有25人,完成2×2列联表,根据2×2列联表,代入求临界值的公式,求出观测值,利用观测值同临界值表进行比较,K2≈3.030<3.841,故没有理由认为“戏迷”与性别有关;
(Ⅱ)由题意可知X~B(3,$\frac{1}{4}$),根据二项分布求得其分布列,数学期望及方差.

解答 解:(Ⅰ)由频率分布直方图可知在抽取的100人中,“戏迷”有(0.02+0.005)×10×100=25人,
“戏迷”有25人,-----(1分)
2×2列联表如下:

“戏迷”非戏迷总计
153045
104555
总计2575100
将2×2列联表中的数据代入公式:
K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{{n}_{1}+n}_{2}+{n}_{3}+{n}_{4}}$,
=$\frac{100×(30×10-45÷15)^{2}}{75×25×45×55}$≈3.030<3.841,
故没有理由认为“戏迷”与性别有关.-------------(6分)
(Ⅱ)由题可知抽到“戏迷”的概率为0.25,
由题意可知X~B(3,$\frac{1}{4}$),
 X 0 1 2 3
 P $\frac{27}{64}$ $\frac{27}{64}$ $\frac{9}{64}$ $\frac{1}{64}$
∴数学期望E(X)=np=3×$\frac{1}{4}$=$\frac{3}{4}$,
方差D(X)=np(1-p)=3×$\frac{1}{4}$×$\frac{3}{4}$=$\frac{9}{16}$.--------------(12分)

点评 本题考查独立性检验知识的运用,考查二项分布的计算公式、分布列和数学期望及方差的计算公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=x3+mx2-4mx+1在区间(-1,2)上有两个极值点,则实数m的取值范围是(  )
A.(-$\frac{1}{2}$,0)B.($\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,AB为圆D的直径,BC为圆O的切线,过A作OC的平行线交圆O于D,BD与OC相交于E.
(I)求证:CD为圆O的切线;
(Ⅱ)若OA=AD=4,求OC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数F(x)=-ax+lnx+1(a∈R).
(1)讨论函数F(x)的单调性;
(2)定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(F(x))+f(ax-lnx-1)≥2f(1)对x∈[1,3]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,圆O与等腰直角三角形ABC的两直角边相切,交斜边BC于F,G两点,且BF=FG=$\sqrt{2}$,则圆O的半径等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为研究司机血液中含有酒精与对事故负有责任是否有关系,从死于汽车碰撞事故的司机中随机抽取2000名司机,得到如下列联表:
 类别有责任 无责任 总计 
 有酒精 650150  800
 无酒精 700 500 1200
 合计1350  650 2000
试利用图形分析司机血液中含有酒精与对事故负有责任是否有关系,根据列联表的独立性检验,能否在犯错误的概率不超过0.001的前提下认为二者有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平,为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了200位30到40岁的公务员,得到情况如表:
 男公务员女公务员
生二胎8040
不生二胎4040
(1)是否有99%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)采用分层抽样的方式从男公务员中调查6人,并对其中的3人进行回访,则这三人都要生二胎的概率是多少?
附:k2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
K03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在圆O中,相交于点E的两弦AB,CD的中点分别为M,N.
(1)证明:O,M,E,N四点共圆;
(2)若AB=CD,证明:EO⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:OM=ON(a>b>0)的左右焦点为F1、F2,点A(2,$\sqrt{2}$)在椭圆C上,且AF2与x轴垂直.
(1)求椭圆C的方程;
(2)过A作直线与椭圆C交于另外一点B,O为坐标原点,若三角形AOB的面积为$\frac{2\sqrt{2}}{3}$,求直线AB的斜率.

查看答案和解析>>

同步练习册答案