精英家教网 > 高中数学 > 题目详情
17.如图,圆O与等腰直角三角形ABC的两直角边相切,交斜边BC于F,G两点,且BF=FG=$\sqrt{2}$,则圆O的半径等于1.

分析 利用勾股定理、切割线定理建立方程组,即可求出圆O的半径.

解答 解:设圆的半径为r,BD=x,则$\left\{\begin{array}{l}{\sqrt{2}(x+r)=3\sqrt{2}}\\{{x}^{2}=\sqrt{2}•2\sqrt{2}}\end{array}\right.$,∴r=1,x=2.
故答案为:1.

点评 本题考查圆的切线的性质,考查勾股定理、切割线定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.有6个人站成一排,甲乙两人都站在丙的同侧的不同站法有480种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=$\frac{\sqrt{3}}{2}$,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4$\sqrt{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$的值;
(Ⅲ)求四边形MF1NF2面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=|x-1|+|x-2|.
(1)求不等式f(x)<3的解集;
(2)不等式f(x)≤a(x+$\frac{1}{2}$)的解集非空,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.国内某大学有男生6000人,女生4000人,该校想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是[0,3],若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”,根据调查的数据按性别与“是否为‘运动达人’”进行统计,得到如表2×2列联表.
运动时间
性别 
运动达人非运动达人合计
男生 36  
女生  26 
合计  100 
(1)请根据题目信息,将2×2类联表中的数据补充完整,并通过计算判断能否在犯错误频率不超过0.025的前提下认为性别与“是否为‘运动达人’”有关;
(2)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.广播电台为了了解某地区的听众对某个戏曲节目的收听情况,随机抽取了100名听众进行调查,下面是根据调查结果绘制的听众日均收听该节目的频率分布直方图,将日均收听该节目时间不低于40分钟的听众成为“戏迷”
(Ⅰ)根据已知条件完成2×2列联表,并判断“戏迷”与性别是否有关?
“戏迷”非戏迷总计
1055
总计
附:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$,
 P(K2≥k) 0.05 0.01
 k 3.841 6.635
(Ⅱ)将上述调查所得到的频率当作概率.现在从该地区大量的听众中,采用随机抽样的方法每次抽取1名听众,抽取3次,记被抽取的3名听众中“戏迷”的人数为X,若每次抽取的结果相互独立,求X的分布列,数学期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件,试利用图形判断监督员甲不在生产现场对产品质量好坏有无影响.能否在犯错误的概率不超过0.001的前提下认为质量监督员甲在不在生产现场与产品质量好坏有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={1,2,3,4,5,6,7}.
(1)满足{1,2,3}⊆B⊆A的集合B的个数是16;
(2)若C是A的含有4个元素的子集,且满足对任意的x,x∈C,都满足x+1∈C或x-1∈C,则集合C的个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的是(  )
A.三条两两相交的直线一定在同一面内
B.垂直于同一条直线的两条直线一定平行
C.m,n是平面α内的两条相交直线,l1,l2是平面β内的两条相交直线,若m∥l1,n∥l2,则α∥β
D.α,β,η是三个不同的平面,若α⊥η,β⊥η,则α∥β

查看答案和解析>>

同步练习册答案