分析 (1)分子分母同时除以cos75°,再把1化为tan45°,然后利用两角差的正切得答案;
(2)由tan120°=tan(36°+84°),展开两角和的正切求得tan36°+tan84°-$\sqrt{3}$tan36°tan84°.
解答 解:(1)$\frac{cos75°-sin75°}{cos75°+sin75°}$=$\frac{1-tan75°}{1+tan75°}$=$\frac{tan45°-tan75°}{1+tan45°tan75°}$=$tan(45°-75°)=tan(-30°)=-tan30°=-\frac{\sqrt{3}}{3}$;
(2)由-$\sqrt{3}$=tan120°=tan(36°+84°)=$\frac{tan36°+tan84°}{1-tan36°tan84°}$,
得$tan36°+tan84°=-\sqrt{3}+\sqrt{3}tan36°tan84°$,
∴tan36°+tan84°-$\sqrt{3}$tan36°tan84°=$-\sqrt{3}$.
点评 本题考查三角函数的化简求值,考查两角和与差的正切,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 直线 | B. | 圆 | C. | 椭圆 | D. | 双曲线的一支 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com