精英家教网 > 高中数学 > 题目详情
20.已知f(x)是定义在R上周期为4的偶函数,若f(x)在区间[-2,0]上单凋递减,且f(-1)=0,则f(x)在区间[0,10]内的零点个数是5.

分析 由题意可得函数图象,数形结合可得.

解答 解:由题意可得f(1)=f(-1)=0,
函数的图象大致如图所示,
由图象可知f(x)在区间[0,10]内的零点个数为5,
故答案为:5.

点评 本题考查函数的周期性和奇偶性,数形结合是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在年龄互不相同的5名工人中选派工人去看管A、B两个仓库,且两个仓库都至少要有一人看管,若看管仓库A的工人年龄最大的小于看管仓库B的工人年龄最小的,则不同的选派方法有(  )
A.45B.49C.55D.59

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F1,F2分别为椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$-$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e∈[$\frac{3}{4}$,$\frac{2\sqrt{2}}{3}$],则双曲线C2的离心率e1的取值范围为(  )
A.[$\frac{2\sqrt{14}}{7}$,$\frac{3\sqrt{2}}{2}$]B.[$\frac{2\sqrt{14}}{7}$,$\sqrt{2}$)C.[$\sqrt{2}$,$\frac{3\sqrt{2}}{2}$]D.[$\frac{3\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,短轴的一个端点到右焦点的距离为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设倾斜角为30°的直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为$\frac{\sqrt{3}}{3}$,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知公比为q的等比数列{an}的前n项和为Sn•a1=$\frac{1}{2}$,数列{anSn+an2}也是公比为q的等比数列,记数列{4an+1}的前n项和为Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7对任意的n∈N*,恒成立,则实数为k的取值范围是k≥$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知Sn是等差数列{an}的前n项和,若a2=3,Sm-Sm-3=51(m是大于3的自然数),Sm=100,则m=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).
(1)求曲线C的直角坐标方程;
(2)在曲线C上求一点D,使它到直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=3t+2}\end{array}\right.$,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对于2×2的方阵,定义如下的乘法:
$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$×$[\begin{array}{l}{e}&{f}\\{g}&{h}\end{array}]$=$[\begin{array}{l}{ae+bg}&{af+bh}\\{ce+dg}&{cf+dh}\end{array}]$,并设$[\begin{array}{l}{1}&{4}\\{2}&{3}\end{array}]$=$[\begin{array}{l}{{a}_{1}}&{{b}_{1}}\\{{c}_{1}}&{{d}_{1}}\end{array}]$,$[\begin{array}{l}{1}&{4}\\{2}&{3}\end{array}]$×$[\begin{array}{l}{{a}_{n}}&{{b}_{n}}\\{{c}_{n}}&{{d}_{n}}\end{array}]$=$[\begin{array}{l}{{a}_{n+1}}&{{b}_{n+1}}\\{{c}_{n+1}}&{{d}_{n+1}}\end{array}]$(n=1,2,3,…)
(Ⅰ)证明:数列{an+2cn}是等比数列;
(Ⅱ)证明:存在实数λ,使得数列{an-λ•5n}为等比数列,列,并求出{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:$\frac{x^2}{4}+{y^2}=1$,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中$D(-\frac{6}{5},0)$.设直线AB,AC的斜率分别为k1,k2
(1)求k1k2的值;
(2)记直线PQ,BC的斜率分别为kPQ,kBC,是否存在常数λ,使得kPQ=λkBC?若存在,求λ值;若不存在,说明理由;
(3)求证:直线AC必过点Q.

查看答案和解析>>

同步练习册答案