16£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÔ²O£ºx2+y2=4£¬ÍÖÔ²C£º$\frac{x^2}{4}+{y^2}=1$£¬AΪÍÖÔ²ÓÒ¶¥µã£®¹ýÔ­µãOÇÒÒìÓÚ×ø±êÖáµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚB£¬CÁ½µã£¬Ö±ÏßABÓëÔ²OµÄÁíÒ»½»µãΪP£¬Ö±ÏßPDÓëÔ²OµÄÁíÒ»½»µãΪQ£¬ÆäÖÐ$D£¨-\frac{6}{5}£¬0£©$£®ÉèÖ±ÏßAB£¬ACµÄбÂÊ·Ö±ðΪk1£¬k2£®
£¨1£©Çók1k2µÄÖµ£»
£¨2£©¼ÇÖ±ÏßPQ£¬BCµÄбÂÊ·Ö±ðΪkPQ£¬kBC£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃkPQ=¦ËkBC£¿Èô´æÔÚ£¬Çó¦ËÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©ÇóÖ¤£ºÖ±ÏßAC±Ø¹ýµãQ£®

·ÖÎö £¨1£©ÉèB£¨x0£¬y0£©£¬ÔòC£¨-x0£¬-y0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼ò¼´¿ÉµÃµ½ËùÇóÖµ£»
£¨2£©ÁªÁ¢Ö±ÏßABµÄ·½³ÌºÍÔ²·½³Ì£¬ÇóµÃPµÄ×ø±ê£»ÁªÁ¢Ö±ÏßABµÄ·½³ÌºÍÍÖÔ²·½³Ì£¬ÇóµÃBµÄ×ø±ê£¬ÔÙÇóÖ±ÏßPQ£¬ºÍÖ±ÏßBCµÄбÂÊ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÌÖÂÛÖ±ÏßPQµÄбÂʲ»´æÔںʹæÔÚ£¬ÁªÁ¢Ö±ÏßPQµÄ·½³ÌºÍÍÖÔ²·½³Ì£¬ÇóµÃQµÄ×ø±ê£¬¿ÉµÃAQµÄбÂÊ£¬¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÉèB£¨x0£¬y0£©£¬ÔòC£¨-x0£¬-y0£©£¬$\frac{{{x_0}^2}}{4}+{y_0}^2=1$£¬
ËùÒÔ${k_1}{k_2}=\frac{y_0}{{{x_0}-2}}•\frac{y_0}{{{x_0}+2}}=\frac{{{y_0}^2}}{{{x_0}^2-4}}=\frac{{1-\frac{1}{4}{x_0}^2}}{{{x_0}^2-2}}=-\frac{1}{4}$£»            
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}y={k_1}£¨x-2£©\\{x^2}+{y^2}=4\end{array}\right.$µÃ$£¨1+k_1^2£©{x^2}-4k_1^2x+4£¨k_1^2-1£©=0$£¬
½âµÃ${x_P}=\frac{2£¨k_1^2-1£©}{1+k_1^2}£¬{y_P}={k_1}£¨{x_P}-2£©=\frac{{-4{k_1}}}{1+k_1^2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}y={k_1}£¨x-\sqrt{2}£©\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$µÃ$£¨1+4k_1^2£©{x^2}-16k_1^2x+4£¨4k_1^2-1£©=0$£¬
½âµÃ${x_B}=\frac{2£¨4k_1^2-1£©}{1+4k_1^2}£¬{y_B}={k_1}£¨{x_B}-\sqrt{2}£©=\frac{{-4{k_1}}}{1+4k_1^2}$£¬
ËùÒÔ${k_{BC}}=\frac{y_B}{x_B}=\frac{{-2{k_1}}}{4k_1^2-1}$£¬${k_{PQ}}=\frac{y_P}{{{x_P}+\frac{6}{5}}}=\frac{{\frac{{-4{k_1}}}{1+k_1^2}}}{{\frac{2£¨k_1^2-1£©}{1+k_1^2}+\frac{6}{5}}}=\frac{{-5{k_1}}}{4k_1^2-1}$£¬
ËùÒÔ${k_{PQ}}=\frac{5}{2}{k_{BC}}$£¬
¹Ê´æÔÚ³£Êý$¦Ë=\frac{5}{2}$£¬Ê¹µÃ${k_{PQ}}=\frac{5}{2}{k_{BC}}$£®           
£¨3£©Ö¤Ã÷£ºµ±Ö±ÏßPQÓëxÖᴹֱʱ£¬$Q£¨-\frac{6}{5}£¬-\frac{8}{5}£©$£¬
Ôò${k_{AQ}}=\frac{{-\frac{8}{5}}}{{-\frac{6}{5}-2}}=\frac{1}{2}={k_2}$£¬ËùÒÔÖ±ÏßAC±Ø¹ýµãQ£®
µ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬Ö±ÏßPQ·½³ÌΪ£º$y=\frac{{-5{k_1}}}{4k_1^2-1}£¨x+\frac{6}{5}£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}y=\frac{{-5{k_1}}}{4k_1^2-1}£¨x+\frac{6}{5}£©\\{x^2}+{y^2}=4\end{array}\right.$£¬
½âµÃ${x_Q}=\frac{-2£¨16k_1^2-1£©}{16k_1^2+1}£¬{y_Q}=\frac{{16{k_1}}}{16k_1^2+1}$£¬
ËùÒÔ${k_{AQ}}=\frac{{\frac{{16{k_1}}}{16k_1^2+1}}}{{\frac{-2£¨16k_1^2-1£©}{16k_1^2+1}-2}}=-\frac{1}{{4{k_1}}}={k_2}$£¬
¹ÊÖ±ÏßAC±Ø¹ýµãQ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÇóµÃ½»µã£¬¿¼²éÖ±ÏßµÄбÂʺͷ½³ÌµÄÔËÓ㬾ͻ¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉÏÖÜÆÚΪ4µÄżº¯Êý£¬Èôf£¨x£©ÔÚÇø¼ä[-2£¬0]Éϵ¥µòµÝ¼õ£¬ÇÒf£¨-1£©=0£¬Ôòf£¨x£©ÔÚÇø¼ä[0£¬10]ÄÚµÄÁãµã¸öÊýÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖª¼¯ºÏA={1£¬-1}£¬B={-1£¬0}£¬C={1£¬2}£¬Ôò£¨A¡ÉB£©¡ÈC=£¨¡¡¡¡£©
A£®{-1£¬0£¬1}B£®{-1£¬1}C£®{-1£¬1£¬2}D£®{1£¬0}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ÆäÉÏÒ»µãPÓë×ó¡¢ÓÒ½¹µãF1£¬F2×é³ÉµÄÈý½ÇÐÎPF1F2µÄÖܳ¤Îª2+2$\sqrt{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±Ïßx-$\sqrt{2}$y+n=0£¨n£¾0£©ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÈôÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¹ýµã$M£¨{\frac{1}{2}£¬0}£©$£¬Çó¡÷MABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª$|{\overrightarrow a}|=1$£¬$|{\overrightarrow b}|=2$£¬$£¨{\overrightarrow a+\overrightarrow b}£©•\overrightarrow b=3$£¬$\overrightarrow a-\overrightarrow b$Óë$\overrightarrow a$µÄ¼Ð½ÇΪ¦È£¬Ôòcos¦È=$\frac{2\sqrt{7}}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a2=3£¬a5=81£¬bn=1+2log3an£®
£¨1£©ÇóÊýÁÐ{bn}µÄǰnÏîµÄºÍ£»
£¨2£©ÒÑÖªÊýÁÐ$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$µÄǰÏîµÄºÍΪSn£¬Ö¤Ã÷£º${S_n}£¼\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬ÔÚËÄÀâÖùABCD-A1B1C1D1ÖУ¬µ×ÃæABCDÊÇÕý·½ÐΣ¬²àÀâAA1¡Íµ×ÃæABCD£¬ÒÑÖªAB=1£¬${A}{{A}_1}=\sqrt{3}$£¬EΪABÉÏÒ»¸ö¶¯µã£¬ÔòD1E+CEµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$2\sqrt{2}$B£®$\sqrt{10}$C£®$\sqrt{5}+1$D£®$2+\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³ÊÐÆøÏó²¿ÃŶԸÃÊÐÖÐÐijÇÇø½ü4Äê´º½ÚÆÚ¼ä£¨Ã¿Äê¾ùͳ¼Æ´º½Ú¼ÙÆÚµÄǰ7Ì죩µÄ¿ÕÆøÎÛȾָÊý½øÐÐÁËͳ¼Æ·ÖÎö£¬ÇÒ°´ÊÇ·ñȼ·Å±ÞÅÚ·Ö³ÉÁ½×飬µÃµ½ÈçͼµÄ¾¥Ò¶Í¼£¬¸ù¾Ý¹ú¼Ò×îбê×¼£¬¿ÕÆøÎÛȾָÊý²»³¬¹ý100µÄ±íʾûÓÐÎíö²£¬³¬¹ý100µÄ±íʾÓÐÎíö²£®
£¨¢ñ£©Èô´Ó¾¥Ò¶Í¼ÓÐÎíö²µÄ14ÌìÖÐËæ»ú³éÈ¡2Ì죬ÓÃËæ»ú±äÁ¿¦Î±íʾ±»³éÖÐÇÒδȼ·Å±ÞÅÚµÄÌìÊý£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£»
£¨¢ò£©Í¨¹ý¾¥Ò¶Í¼ÌîдÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÓжà´óµÄ°ÑÎÕ¿ÉÒÔÈÏΪȼ·Å±ÞÅÚÓë²úÉúÎíö²Óйأ¿
ȼ·Åδȼ·ÅºÏ¼Æ
ÓÐÎíö²
ÎÞÎíö²
ºÏ¼Æ
¸½£º¶ÀÁ¢ÐÔ¼ìÑ鿨·½Í³¼ÆÁ¿£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+dΪÑù±¾ÈÝÁ¿£»
¶ÀÁ¢ÐÔ¼ìÑéÁÙ½çÖµ±í£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ä³²úÆ·ÔÚijÁãÊÛ̯λµÄÁãÊÛ¼Ûx£¨µ¥Î»£ºÔª£©ÓëÿÌìµÄÏúÊÛÁ¿y£¨µ¥Î»£º¸ö£©µÄͳ¼Æ×ÊÁÏÈç±íËùʾ£º
 x 16 17 18 19
 y 50 34 41 31
Óɱí¿ÉµÃ»Ø¹éÖ±Ïß·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$ÖеÄ$\stackrel{¡Ä}{b}$=-4£¬¾Ý´ËÄ£ÐÍÔ¤²âÁãÊÛ¼ÛΪ20Ԫʱ£¬Ã¿ÌìµÄÏúÊÛÁ¿Îª¡¡¡¡¡¡£¨¡¡¡¡£©
A£®26¸öB£®27¸öC£®28¸öD£®29¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸