12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬¦È¡Ê[0£¬2¦Ð£©£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÔÚÇúÏßCÉÏÇóÒ»µãD£¬Ê¹Ëüµ½Ö±Ïßl£º$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=3t+2}\end{array}\right.$£¬£¨tΪ²ÎÊý£¬t¡ÊR£©µÄ¾àÀë×î¶Ì£¬²¢Çó³öµãDµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨I£©ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\\{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$¿É°ÑÔ²CµÄ¼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì£®
£¨II£©ÏûÈ¥²ÎÊý°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Çó³öÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd£¬µÃ³öÖ±ÏßÓëÔ²µÄλÖùØÏµ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬¦È¡Ê[0£¬2¦Ð£©£¬¼´¦Ñ2=2¦Ñsin¦È£¬»¯Îªx2+y2-2y=0£¬Å䷽Ϊx2+£¨y-1£©2=1£®
£¨2£©ÇúÏßCµÄÔ²ÐÄC£¨0£¬1£©£¬°ë¾¶r=1£®
Ö±Ïßl£º$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=3t+2}\end{array}\right.$£¬£¨tΪ²ÎÊý£¬t¡ÊR£©»¯ÎªÆÕͨ·½³Ì£º$\sqrt{3}x$-y-1=0£¬
¿ÉµÃÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|0-1-1|}{2}$=1=0£¬
¡àÖ±ÏßlÓëÔ²CÏàÇУ¬ÆäÇе㼴ΪËùÇó£®
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2y=0}\\{\sqrt{3}x-y-1=0}\end{array}\right.$£¬½âµÃD$£¨\frac{\sqrt{3}}{2}£¬\frac{1}{2}£©$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Ö±ÏßÓëÔ²ÏàÇÐÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èôº¯Êý$f£¨x£©=\left\{\begin{array}{l}2x+2£¬x¡Ü0\\{2^x}-4£¬x£¾0\end{array}\right.$£¬Ôòf£¨f£¨1£©£©µÄֵΪ£¨¡¡¡¡£©
A£®-10B£®10C£®-2D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªA£¨-2£¬0£©£¬B£¨2£¬0£©ÎªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ¶¥µã£¬ÀëÐÄÂÊe=$\frac{1}{2}$£¬PÊÇÍÖÔ²CÉÏÒìÓÚA£¬BµÄ¶¯µã£®
£¨1£©ÇóÖ¤£ºkPA•kPBΪ¶¨Öµ£»
£¨2£©¹ýµãQ£¨1£¬0£©×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïßl1£¬l2£¬·Ö±ð½»ÇúÏßCÓÚE£¬F£¬G£¬H£¬ÇóËıßÐÎEFGHÃæ»ýµÄ×îСֵ¼°È¡µÃ×îСֵʱֱÏßl1£¬l2µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉÏÖÜÆÚΪ4µÄżº¯Êý£¬Èôf£¨x£©ÔÚÇø¼ä[-2£¬0]Éϵ¥µòµÝ¼õ£¬ÇÒf£¨-1£©=0£¬Ôòf£¨x£©ÔÚÇø¼ä[0£¬10]ÄÚµÄÁãµã¸öÊýÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®É趨ÒåÔÚDÉϵĺ¯Êýy=h£¨x£©ÔÚµãP£¨x0£¬h£¨x0£©£©´¦µÄÇÐÏß·½³ÌΪl£ºy=g£¨x£©£¬µ±x¡Ùx0ʱ£¬Èô$\frac{h£¨x£©-g£¨x£©}{x-{x}_{0}}$£¾0ÔÚDÄÚºã³ÉÁ¢£¬Ôò³ÆPΪº¯Êýy=h£¨x£©µÄ¡°Àà¶Ô³Æµã¡±£¬Ôòf£¨x£©=lnx+x2-xµÄ¡°Àà¶Ô³Æµã¡±µÄºá×ø±êÊÇ£¨¡¡¡¡£©
A£®2B£®$\frac{\sqrt{2}}{2}$C£®$\sqrt{2}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®£¨ax+$\frac{1}{ax}$£©4£¨x-2£©2Õ¹¿ªÊ½µÄ³£ÊýÏîΪ25£¬Ôò¸ºÊµÊýaµÄֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¼×¡¢ÒÒ¡¢±ûÈýͬѧ·Ö±ð½â¡°x¡Ê[$\frac{1}{2}$£¬+¡Þ£©£¬Çóº¯Êýy=2x2+1µÄ×îСֵ¡±µÄ¹ý³ÌÈçÏ£º
¼×£ºy=2x2+1¡Ý2$\sqrt{2{x}^{2}•1}$=2$\sqrt{2}$x¡Ý2$\sqrt{2}$•$\frac{1}{2}$=$\sqrt{2}$£¬¼´yµÄ×îСֵΪ$\sqrt{2}$
ÒÒ£»y=2x2+1¡Ý2$\sqrt{2{x}^{2}•1}$=2$\sqrt{2}$x£¬µ±ÇÒ½öµ±x=$\frac{\sqrt{2}}{2}$ʱ£¬yµÄ×îСֵΪ2
±û£ºÒòΪy=2x2+1£¬ÔÚ[$\frac{1}{2}$£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ËùÒÔyµÄ×îСֵΪ$\frac{3}{2}$
ÊÔÅжÏË­´í£¿´íÔں䦣¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖª¼¯ºÏA={1£¬-1}£¬B={-1£¬0}£¬C={1£¬2}£¬Ôò£¨A¡ÉB£©¡ÈC=£¨¡¡¡¡£©
A£®{-1£¬0£¬1}B£®{-1£¬1}C£®{-1£¬1£¬2}D£®{1£¬0}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬ÔÚËÄÀâÖùABCD-A1B1C1D1ÖУ¬µ×ÃæABCDÊÇÕý·½ÐΣ¬²àÀâAA1¡Íµ×ÃæABCD£¬ÒÑÖªAB=1£¬${A}{{A}_1}=\sqrt{3}$£¬EΪABÉÏÒ»¸ö¶¯µã£¬ÔòD1E+CEµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$2\sqrt{2}$B£®$\sqrt{10}$C£®$\sqrt{5}+1$D£®$2+\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸