精英家教网 > 高中数学 > 题目详情
4.甲、乙、丙三同学分别解“x∈[$\frac{1}{2}$,+∞),求函数y=2x2+1的最小值”的过程如下:
甲:y=2x2+1≥2$\sqrt{2{x}^{2}•1}$=2$\sqrt{2}$x≥2$\sqrt{2}$•$\frac{1}{2}$=$\sqrt{2}$,即y的最小值为$\sqrt{2}$
乙;y=2x2+1≥2$\sqrt{2{x}^{2}•1}$=2$\sqrt{2}$x,当且仅当x=$\frac{\sqrt{2}}{2}$时,y的最小值为2
丙:因为y=2x2+1,在[$\frac{1}{2}$,+∞)上单调递增,所以y的最小值为$\frac{3}{2}$
试判断谁错?错在何处?

分析 由基本不等式求最值和函数单调性可得.

解答 解:甲和乙都错误,因为没有出现乘积为定值,
丙正确,利用了函数的单调性.

点评 本题考查基本不等式求最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{x^{\frac{1}{3}}},x>0\end{array}\right.$,若f(α)=1,则f(f(α-1))=(  )
A.$\frac{{\root{3}{4}}}{2}$或1B.$\frac{1}{2}$或1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知公比为q的等比数列{an}的前n项和为Sn•a1=$\frac{1}{2}$,数列{anSn+an2}也是公比为q的等比数列,记数列{4an+1}的前n项和为Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7对任意的n∈N*,恒成立,则实数为k的取值范围是k≥$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).
(1)求曲线C的直角坐标方程;
(2)在曲线C上求一点D,使它到直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=3t+2}\end{array}\right.$,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a=5,b=4,sin$\frac{C}{2}$=$\frac{4}{5}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对于2×2的方阵,定义如下的乘法:
$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$×$[\begin{array}{l}{e}&{f}\\{g}&{h}\end{array}]$=$[\begin{array}{l}{ae+bg}&{af+bh}\\{ce+dg}&{cf+dh}\end{array}]$,并设$[\begin{array}{l}{1}&{4}\\{2}&{3}\end{array}]$=$[\begin{array}{l}{{a}_{1}}&{{b}_{1}}\\{{c}_{1}}&{{d}_{1}}\end{array}]$,$[\begin{array}{l}{1}&{4}\\{2}&{3}\end{array}]$×$[\begin{array}{l}{{a}_{n}}&{{b}_{n}}\\{{c}_{n}}&{{d}_{n}}\end{array}]$=$[\begin{array}{l}{{a}_{n+1}}&{{b}_{n+1}}\\{{c}_{n+1}}&{{d}_{n+1}}\end{array}]$(n=1,2,3,…)
(Ⅰ)证明:数列{an+2cn}是等比数列;
(Ⅱ)证明:存在实数λ,使得数列{an-λ•5n}为等比数列,列,并求出{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$\frac{tan40°}{1-ta{n}^{2}40°}$=$\frac{1}{2}$tan80°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式-1≤tan($\frac{x}{2}$-$\frac{π}{3}$)≤$\sqrt{3}$的解集为[$\frac{π}{6}$+2kπ,2kπ+$\frac{4π}{3}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知直线l:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数)与圆C:$\left\{\begin{array}{l}{x=2+3cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)相交于A,B两点.
(1)求直线l及圆C的普通方程
(2)已知F(1,0),求|FA|+|FB|的值.

查看答案和解析>>

同步练习册答案