精英家教网 > 高中数学 > 题目详情
3.已知A(-2,0),B(2,0)为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点,离心率e=$\frac{1}{2}$,P是椭圆C上异于A,B的动点.
(1)求证:kPA•kPB为定值;
(2)过点Q(1,0)作两条互相垂直的直线l1,l2,分别交曲线C于E,F,G,H,求四边形EFGH面积的最小值及取得最小值时直线l1,l2的方程.

分析 (1)由题意可得a=2,e=$\frac{c}{a}$=$\frac{1}{2}$,求得c=1,由a,b,c的关系,可得b,进而得到椭圆方程,设出P的坐标,代入椭圆方程,再由斜率公式,即可得证;
(2)分斜率存在与存在分别讨论,利用直线与椭圆联立,根据韦达定理及弦长公式,确定面积的表达式,运用基本不等式可得最值,即可求得结论.

解答 解:(1)证明:由椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得a=2,e=$\frac{c}{a}$=$\frac{1}{2}$,
解得c=1,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
即有椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,
设P(m,n),即有$\frac{{m}^{2}}{4}$+$\frac{{n}^{2}}{3}$=1,即$\frac{{n}^{2}}{3}$=-$\frac{{m}^{2}-4}{4}$,
则kPA•kPB=$\frac{n}{m+2}$•$\frac{n}{m-2}$=$\frac{{n}^{2}}{{m}^{2}-4}$=-$\frac{3}{4}$;
(2)由直线l1,l2垂直.
(ⅰ)若l1,l2中一条斜率不存在,另一条斜率为0,
则四边形EFGH的面积S=$\frac{1}{2}$•2a•$\frac{2{b}^{2}}{a}$=2b2=6;
(ⅱ)若l1,l2的斜率均存在,
设l1:y=k(x-1)与椭圆方程联立$\left\{\begin{array}{l}{y=k(x-1)}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,
消去y可得(3+4k2)x-8k2x+4k2-12=0,
由(1,0)为椭圆的焦点,则△>0,
设E(x1,y1),G(x2,y2),
则x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
∴|EG|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{64{k}^{4}}{(3+4{k}^{2})^{2}}-\frac{16{k}^{2}-48}{3+4{k}^{2}}}$=$\frac{12(1+{k}^{2})}{3+4{k}^{2}}$;
同理可得|FH|=$\frac{12(1+{k}^{2})}{4+3{k}^{2}}$.
∴S=$\frac{1}{2}$|EG|•|FH|=72•$\frac{{k}^{4}+2{k}^{2}+1}{12{k}^{4}+25{k}^{2}+12}$=$\frac{72}{12+\frac{{k}^{2}}{{k}^{4}+2{k}^{2}+1}}$=$\frac{72}{12+\frac{1}{{k}^{2}+\frac{1}{{k}^{2}}+2}}$,
由k2+$\frac{1}{{k}^{2}}$≥2,(k=±1)时取得等号),
可得$\frac{288}{49}$≤S<6.
由(ⅰ)(ⅱ)知,Smin=$\frac{288}{49}$,Smax=6.
故面积取得最小值$\frac{288}{49}$,直线l1,l2的方程分别为y=x-1,y=-x+1.

点评 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,正确表示四边形EFGH的面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个顶点A(0,1),离心率$e=\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过右焦点F作斜率为k的直线l与椭圆E交于M、N两点.若在x轴上存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,试求出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{x^{\frac{1}{3}}},x>0\end{array}\right.$,若f(α)=1,则f(f(α-1))=(  )
A.$\frac{{\root{3}{4}}}{2}$或1B.$\frac{1}{2}$或1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F1,F2分别为椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$-$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e∈[$\frac{3}{4}$,$\frac{2\sqrt{2}}{3}$],则双曲线C2的离心率e1的取值范围为(  )
A.[$\frac{2\sqrt{14}}{7}$,$\frac{3\sqrt{2}}{2}$]B.[$\frac{2\sqrt{14}}{7}$,$\sqrt{2}$)C.[$\sqrt{2}$,$\frac{3\sqrt{2}}{2}$]D.[$\frac{3\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}满足a2=2,且数列{3an-2n}为公比为2的等比数列,则a1=1,数列{an}通项公式an=$\frac{2n+{2}^{n-1}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,短轴的一个端点到右焦点的距离为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设倾斜角为30°的直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为$\frac{\sqrt{3}}{3}$,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知公比为q的等比数列{an}的前n项和为Sn•a1=$\frac{1}{2}$,数列{anSn+an2}也是公比为q的等比数列,记数列{4an+1}的前n项和为Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7对任意的n∈N*,恒成立,则实数为k的取值范围是k≥$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).
(1)求曲线C的直角坐标方程;
(2)在曲线C上求一点D,使它到直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=3t+2}\end{array}\right.$,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式-1≤tan($\frac{x}{2}$-$\frac{π}{3}$)≤$\sqrt{3}$的解集为[$\frac{π}{6}$+2kπ,2kπ+$\frac{4π}{3}$],k∈Z.

查看答案和解析>>

同步练习册答案