精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线E:y2=4x与圆M:(x3)2+y2=r2(r>0)相交于A,B,C,D四个点.

(1)r的取值范围;

(2)设四边形ABCD的面积为S,S最大时,求直线AD与直线BC的交点P的坐标.

【答案】(1) r(2,3). (2) (,0).

【解析】

(1)联立抛物线与圆的方程,利用判别式与韦达定理列不等式组,从而可得结果;(2)根据S=(+)·(x2x1)=(4+4)(x2x1),利用韦达定理将S表示为关于r的函数,换元后利用导数可求当S最大时直线AD与直线BC的交点P的坐标.

(1)联立抛物线与圆的方程

消去y,x22x+9r2=0.

由题意可知x22x+9r2=0(0,+∞)上有两个不等的实数根,

所以解得2<r<3,r(2,3).

(2)根据(1)可设方程x22x+9r2=0的两个根分别为x1,x2(0<x1<x2),

A(x1,2),B(x1, 2),C(x2, 2),D(x2,2),x1+x2=2,x1x2=9r2,

所以S=(+)·(x2x1)=(4+4)(x2x1)

=2·=2·.

t=(0,1),f(t)=S2=4(2+2t)(44t2)= 32(t3+t2t1),

f'(t)= 32(3t2+2t1)= 32(t+1)(3t1),可得f(t)(0,)上单调递增,(,1)上单调递减,即当t=,四边形ABCD的面积取得最大值.

根据抛物线与圆的对称性,可设P点坐标为(m,0),P,A,D三点共线,可得=,整理得m==t=,

所以点P的坐标为(,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.

1)求PX=2);

2)求事件X=4且甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4公里,丙、甲两地距离是丙、乙两地距离的倍,则这个三角形信号覆盖区域的最大面积(单位:平方公里)是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥底面是直角梯形,点E是棱PC的中点,底面ABCD.

(1)判断BE与平面PAD是否平行,证明你的结论;

(2)证明:平面

(3)求三棱锥的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=ax2+12axlnxaR).

1)讨论fx)的单调性;

2)当a0时,证明fxlnae2)﹣2ae为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中,平面平面.

1)证明:

2)若,设中点,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的方程为,其中常数F是抛物线的焦点.

1)设A是点F关于顶点O的对称点,P是抛物线上的动点,求的最大值;

2)设是两条互相垂直,且均经过点F的直线,与抛物线交于点AB与抛物线交于点CD,若点G满足,求点G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时

(Ⅰ)求椭圆的方程;

(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.

查看答案和解析>>

同步练习册答案