分析 由内角和定理和条件表示出C,并求出A的范围,利用正弦定理表示出AB、AC,代入AB+2AC利用两角差的正弦公式、分离常数法化简,再构造函数:求导、求单调区间、最小值,即可求出AB+2AC的最小值.
解答 解:因为B=$\frac{π}{4}$,A+B+C=π,所以A+C=$\frac{3π}{4}$,
则C=$\frac{3π}{4}$-A,$A∈(0,\frac{3π}{4})$,
由正弦定理得,$\frac{BC}{sinA}=\frac{AC}{sinB}=\frac{AB}{sinC}$,
所以AB=$\frac{BC•sinC}{sinA}$=$\frac{\sqrt{2}sin(\frac{3π}{4}-A)}{sinA}$,AC=$\frac{BC•sinB}{sinA}$=$\frac{\sqrt{2}•\frac{\sqrt{2}}{2}}{sinA}$=$\frac{1}{sinA}$,
所以AB+2AC=$\frac{\sqrt{2}sin(\frac{3π}{4}-A)}{sinA}$+$\frac{2}{sinA}$=$\frac{\sqrt{2}(sin\frac{3π}{4}cosA-cos\frac{3π}{4}sinA)+2}{sinA}$
=$\frac{cosA+sinA+2}{sinA}$=$\frac{cosA+2}{sinA}$+1,
设y=$\frac{cosA+2}{sinA}$,$A∈(0,\frac{3π}{4})$,
则y′=$\frac{(cosA+2)′•sinA-(cosA+2)•(sinA)′}{si{n}^{2}A}$
=$\frac{-si{n}^{2}A-co{s}^{2}A-2cosA}{si{n}^{2}A}$=$\frac{-1-2cosA}{si{n}^{2}A}$,
由y′=0得,-1-2cosA=0,cosA=$-\frac{1}{2}$,则A=$\frac{2π}{3}$,
当$A∈(0,\frac{2π}{3})$时,y′<0,函数y在$(0,\frac{2π}{3})$上是减函数,
当$A∈(\frac{2π}{3},\frac{3π}{4})$时,y′>0,函数y在$(\frac{2π}{3},\frac{3π}{4})$上是增函数,
∴当A=$\frac{2π}{3}$时,函数y=$\frac{cosA+2}{sinA}$取到最小值是$\frac{-\frac{1}{2}+2}{\frac{\sqrt{3}}{2}}=\sqrt{3}$,
∴AB+2BC的最大值为$\sqrt{3}+1$.
故答案为:$\sqrt{3}+1$.
点评 本题考查正弦定理、两角差的正弦公式,导数与函数的单调性、最值的应用,以及构造函数法、分离常数法,考查化简、计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [${\frac{π}{6}$,$\frac{5π}{6}}$] | B. | [${\frac{π}{3}$,$\frac{2π}{3}}$] | C. | [0,$\frac{π}{6}}$]∪[${\frac{5π}{6}$,π] | D. | [0,$\frac{π}{3}}$]∪[${\frac{2π}{3}$,π] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com