| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{5π}{12}$ |
分析 $\frac{1}{lo{g}_{c-b}a}$+$\frac{1}{lo{g}_{c+b}a}$=2,化为$lo{g}_{a}({c}^{2}-{b}^{2})$=2,可得c2=b2+a2,$C=\frac{π}{2}$.由$\sqrt{3}$sinA+cosA=$\sqrt{2}$,可得2$sin(A+\frac{π}{6})$=$\sqrt{2}$,A∈$(0,\frac{π}{2})$,解得A.即可得出B.
解答 解:∵$\frac{1}{lo{g}_{c-b}a}$+$\frac{1}{lo{g}_{c+b}a}$=2,
∴loga(c-b)+loga(c+b)=$lo{g}_{a}({c}^{2}-{b}^{2})$=2,
∴c2-b2=a2,即c2=b2+a2,
∴$C=\frac{π}{2}$.
∵$\sqrt{3}$sinA+cosA=$\sqrt{2}$,
∴2$sin(A+\frac{π}{6})$=$\sqrt{2}$,A∈$(0,\frac{π}{2})$,
∴A+$\frac{π}{6}$=$\frac{π}{4}$,解得A=$\frac{π}{12}$.
则B=$\frac{π}{2}-\frac{π}{12}$=$\frac{5π}{12}$.
故选:D.
点评 本题考查了对数的运算性质、勾股定理的逆定理、和差公式、直角三角形的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{2}}{4π}$ | B. | $\frac{4π-3\sqrt{2}}{4π}$ | C. | $\frac{1}{2π}$ | D. | $\frac{2π-1}{2π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数 | B. | 偶函数 | ||
| C. | 非奇非偶函数 | D. | 既是奇函数又是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m<-1 | B. | 0<m<1 | C. | m>1 | D. | m≥1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com