精英家教网 > 高中数学 > 题目详情
8.已知长方体ABCD-A1B1C1D1中,AB=2,BC=BB1=$\sqrt{2}$,在长方体的外接球内随机取一点M,则落在长方体外的概率为(  )
A.$\frac{3\sqrt{2}}{4π}$B.$\frac{4π-3\sqrt{2}}{4π}$C.$\frac{1}{2π}$D.$\frac{2π-1}{2π}$

分析 求出长方体的体积,长方体的外接球的体积,即可求出在长方体的外接球内随机取一点M,落在长方体外的概率.

解答 解:由题意,长方体的体积为2×$\sqrt{2}×\sqrt{2}$=4,
长方体的外接球的直径为$\sqrt{4+2+2}$=2$\sqrt{2}$,体积为$\frac{4}{3}π•(\sqrt{2})^{3}$=$\frac{8\sqrt{2}π}{3}$,
∴在长方体的外接球内随机取一点M,则落在长方体外的概率为$\frac{\frac{8\sqrt{2}}{3}π-4}{\frac{8\sqrt{2}}{3}π}$=$\frac{4π-3\sqrt{2}}{4π}$,
故选:B.

点评 本题考查几何概型的概率计算,关键是确定满足条件的区域,利用体积比值求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.求y=$\sqrt{1+x}$+2$\sqrt{1-x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,S1=2,Sn=6,且Sn-Sn-2=3n(n≥3),则数列{an}的通项公式an=$\left\{\begin{array}{l}\frac{3n}{2}+\frac{1}{2},n为奇数\\ \frac{3n}{2}+1,n为偶数\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a,b,c为三角形ABC三边长,a≠1,b<c,若$\sqrt{3}$sinA+cosA=$\sqrt{2}$,且$\frac{1}{lo{g}_{c-b}a}$+$\frac{1}{lo{g}_{c+b}a}$=2,则B角大小为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期12月1日12月2日12月3日12月4日12月5日
温差x/℃101113128
发芽数y/颗2325302616
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并判断该线性回归方程是否可靠(若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的);
参数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线l:y=k(x-$\sqrt{2}$)与曲线x2-y2=1(x>0)相交于A、B两点,则直线l的倾斜角的取值范围是($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)的一个减区间是(2,6),则可以断定函数y=f(2-x)的(  )
A.一个减区间是(4,8)B.一个减区间是(0,4)
C.一个增区间是(-4,0)D.一个增区间是(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在相同的条件下,对某种油菜籽进行发芽试验,结果如表:
                    每批试验菜籽数(n) 2 5 1070  130 310700 1500 2000 3000
 发芽菜籽数(m) 2 4 960  116 282 639 11391806 2715 
 发芽频率($\frac{m}{n}$)         
(1)计算表中菜籽发芽的各个频率;(保留三效有效数字)
(2)从这种油菜籽中任取一粒,它发芽的概率约是多少?(保留一位有效数字)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数z=x+yi(x,y∈R)满足|z|≤1,则|z-2i|的取值范围是[1,3],|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

同步练习册答案