精英家教网 > 高中数学 > 题目详情
17.在相同的条件下,对某种油菜籽进行发芽试验,结果如表:
                    每批试验菜籽数(n) 2 5 1070  130 310700 1500 2000 3000
 发芽菜籽数(m) 2 4 960  116 282 639 11391806 2715 
 发芽频率($\frac{m}{n}$)         
(1)计算表中菜籽发芽的各个频率;(保留三效有效数字)
(2)从这种油菜籽中任取一粒,它发芽的概率约是多少?(保留一位有效数字)

分析 根据表中信息,用发芽的粒数除以每批粒数,得到频率,由于试验次数较多,可以用频率估计概率

解答 解:(1)在相同的条件下,对某种油菜籽进行发芽试验,结果如表:

                    每批试验菜籽数(n) 2 5 1070  130 310700 1500 2000 3000
 发芽菜籽数(m) 2 4 960  116 282 639 11391806 2715 
 发芽频率($\frac{m}{n}$) 10,8 0.9  0.8570.892 0.910  0.913 0.7570.903 0.905
(2)根据统计出的各个频率,估计种子发芽的概率约为0.9

点评 本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(1)若$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(-1,1),$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$.求|$\overrightarrow{c}$|;
(2)若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知长方体ABCD-A1B1C1D1中,AB=2,BC=BB1=$\sqrt{2}$,在长方体的外接球内随机取一点M,则落在长方体外的概率为(  )
A.$\frac{3\sqrt{2}}{4π}$B.$\frac{4π-3\sqrt{2}}{4π}$C.$\frac{1}{2π}$D.$\frac{2π-1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x•sin54°sin(x-36°)+x•cos54°cos(x-36°),则f(x)是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数y=$\frac{sinx+1}{cosx-2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0、|φ|<$\frac{π}{2}$)的图象的一部分如图所示.
(1)求函数f(x)在[0,π]上的单凋递增区间:
(2)已知g(x)=$\left\{\begin{array}{l}{1(0<x<π)}\\{\frac{1}{2}(x=π)}\\{0(π<x<2π)}\end{array}\right.$,求函数y=f(x)与y=g(x)图象的所有交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:等差数列{an}中,a4=14,前10项和S10=185.
(1)求an
(2)已知数列{bn}满足bn=$\frac{{a}_{n}-2}{n}$•2n,求bn的通项公式及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足不等式组$\left\{\begin{array}{l}{y-x≤2}\\{x+y≥4}\\{3x-y≤5}\end{array}\right.$,若目标函数z=y-mx取得最大值时有唯一的最优解(1,3),则实数m的取值范围是(  )
A.m<-1B.0<m<1C.m>1D.m≥1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\frac{1}{3}$sin(2x+$\frac{π}{5}$)的周期T=π,φ=$\frac{π}{5}$.

查看答案和解析>>

同步练习册答案