分析 首先根据题意直线l:y=k(x-$\sqrt{2}$)与曲线x2-y2=1(x>0)相交于A、B两点,进一步判断直线的斜率和渐近线的斜率的关系求出结果.
解答 解:曲线x2-y2=1(x>0)的渐近线方程为:y=±x
直线l:y=k(x-$\sqrt{2}$)与相交于A、B两点
所以:直线的斜率k>1或k<-1
α∈($\frac{π}{4}$,$\frac{3π}{4}$)
由于直线的斜率存在:倾斜角a≠$\frac{π}{2}$,
故直线l的倾斜角的取值范围是($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)
故答案为:($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)
点评 本题考查的知识要点:直线与双曲线的关系,直线的斜率和渐近线的斜率的关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{2}}{4π}$ | B. | $\frac{4π-3\sqrt{2}}{4π}$ | C. | $\frac{1}{2π}$ | D. | $\frac{2π-1}{2π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数 | B. | 偶函数 | ||
| C. | 非奇非偶函数 | D. | 既是奇函数又是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (0,1) | C. | (-1,0)∪(0,1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com