精英家教网 > 高中数学 > 题目详情
11.已知多项式f(x)=2x7+x6+x4+x2+1,当x=2时的函数值时用秦九韶算法计算V2的值是(  )
A.1B.5C.10D.12

分析 f(x)=2x7+x6+x4+x2+1=((((((2x+1)x)x+1)x)x+1)x)x+1,进而得出.

解答 解:f(x)=2x7+x6+x4+x2+1=((((((2x+1)x)x+1)x)x+1)x)x+1,
当x=2时的函数值时用秦九韶算法计算:v0=2,v1=2×2+1=5,V2=5×2=10.
故选:C.

点评 本题考查了秦九韶算法求值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)在x=x0处导数存在,若p:x=x0是f(x)的极值点,;q:f′(x0)=0,则p是q的(  )条件.
A.充分且必要条件
B.充分不必要条件
C.必要不充分条件
D.既不是的充分条件也不是的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.实数x,y满足$\left\{\begin{array}{l}{x≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=kx+y的最大值为13,则实数k=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,S1=2,Sn=6,且Sn-Sn-2=3n(n≥3),则数列{an}的通项公式an=$\left\{\begin{array}{l}\frac{3n}{2}+\frac{1}{2},n为奇数\\ \frac{3n}{2}+1,n为偶数\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c分别为△ABC三个内角A,B,C的对边,且sin2B+sin2C=sin2A+sinBsinC.
(1)求角A的大小;
(2)若△ABC的面积S=$\frac{\sqrt{3}}{3}$,且b+c=4,求边a与sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a,b,c为三角形ABC三边长,a≠1,b<c,若$\sqrt{3}$sinA+cosA=$\sqrt{2}$,且$\frac{1}{lo{g}_{c-b}a}$+$\frac{1}{lo{g}_{c+b}a}$=2,则B角大小为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期12月1日12月2日12月3日12月4日12月5日
温差x/℃101113128
发芽数y/颗2325302616
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并判断该线性回归方程是否可靠(若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的);
参数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)的一个减区间是(2,6),则可以断定函数y=f(2-x)的(  )
A.一个减区间是(4,8)B.一个减区间是(0,4)
C.一个增区间是(-4,0)D.一个增区间是(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断函数f(x)=xln(x+$\sqrt{{x}^{2}+1}$)的奇偶性,并证明.

查看答案和解析>>

同步练习册答案