【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微
信交流”的态度进行调查,随机抽取了
人,他们年龄的频数分布及对 “使用微信交流”赞成的人数如
下表:(注:年龄单位:岁)
年龄 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
赞成人数 |
|
|
|
|
|
|
(1))若以“年龄
岁为分界点”,由以上统计数据完成下面的
列联表,并通过计算判断是否在犯错误的概率不超过
的前提下认为“使用微信交流的态度与人的年龄有关”?
年龄不低于 | 年龄低于 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2))若从年龄在
,
的别调查的人中各随机选取两人进行追踪调查,记选中的
人中赞成“使用微信交流”的人数为,求随机变量
的分布列及数学期望.
附:参考数据如下:
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中
.
科目:高中数学 来源: 题型:
【题目】已知函数
为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行. (Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧. ![]()
(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为
,求该圆形标志物的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
是
的中点,底面
为矩形,
,
,
,且平面
平面
,平面
与棱
交于点
,平面
与平面
交于直线
.
![]()
(1)求证:
;
(2)求
与平面
所成角的正弦值为
,求
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则( )![]()
A.以上四个图形都是正确的
B.只有(2)(4)是正确的
C.只有(4)是错误的
D.只有(1)(2)是正确的
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线
的极坐标方程为
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)写出曲线
的参数方程和直线
的普通方程;
(2)已知点
是曲线
上一点,求点
到直线
的最小距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com