精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中, 的中点,底面为矩形, ,且平面平面,平面与棱交于点,平面与平面交于直线.

(1)求证:

(2)求与平面所成角的正弦值为,求的余弦值.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

(1)由题意结合面面平行的判断定理可证得平面平面,结合面面平行的性质可得.

(2)建立空间直角坐标系,结合直线的方向向量和平面的法向量可得的余弦值是.

试题解析:

(1)矩形中,

平面

平面

平面

平面平面,∴

又平面平面,∴

.

(2)取中点,连接,∵,∴

又平面平面,且平面平面

平面,连接,则在平面内的射影,

与平面所成角,∴.

,由题,∴

中点,连接,以为坐标原点,分别以 的方向分别为 轴的正方向建立如图所示的空间直角坐标系:

则: ,则

设平面的法向量为,于是,∴,令,则

∴平面的一个法向量

同理平面的一个法向量为

.

可知二面角为钝二面角

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c均大于1,且logaclogbc=4,则下列各式中,一定正确的是(
A.ac≥b
B.ab≥c
C.bc≥a
D.ab≤c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列关于x的不等式的解集:
(1)﹣x2+7x>6;
(2)3x2+4x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为14,18,则输出的为( )

A. 0 B. 2 C. 4 D. 14

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微

信交流”的态度进行调查,随机抽取了人,他们年龄的频数分布及对 “使用微信交流”赞成的人数如

下表:(注:年龄单位:岁)

年龄

频数

赞成人数

(1))若以“年龄岁为分界点”,由以上统计数据完成下面的列联表,并通过计算判断是否在犯错误的概率不超过的前提下认为“使用微信交流的态度与人的年龄有关”?

年龄不低于岁的人数

年龄低于岁的人数

合计

赞成

不赞成

合计

(2))若从年龄在 的别调查的人中各随机选取两人进行追踪调查,记选中的人中赞成“使用微信交流”的人数为,求随机变量的分布列及数学期望.

附:参考数据如下:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过定点P(2,1).
(1)求经过点P且在两坐标轴上的截距相等的直线方程;
(2)若过点P的直线l与x轴和y轴的正半轴分别交于A,B两点,求△AOB面积的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M经过点A(3,0),且与直线l:x=﹣3相切,动圆圆心M的轨迹方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线经过P(2,3),射在直线l:xy10,反射后穿过点Q(1,1).

(1)求入射光线的方程;

(2)求这条光线从PQ的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,角A,B,C所对的边分别为a,b,c,若sin2 A+sin2 B=sin2C+sin AsinB,ccosB=b(1﹣cosC).

(1)判断△ABC的形状;
(2)在△ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上的P点处,设∠BDP=θ,当AD最小时,求 的值.

查看答案和解析>>

同步练习册答案