精英家教网 > 高中数学 > 题目详情

【题目】下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为14,18,则输出的为( )

A. 0 B. 2 C. 4 D. 14

【答案】B

【解析】a=14,b=18,ab,

b变为18﹣14=4,

ab,则a变为14﹣4=10,

ab,则a变为10﹣4=6,

ab,则a变为6﹣4=2,

ab,则b变为4﹣2=2,

a=b=2,

则输出的a=2.

故选B.

点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,几何体EFABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,ABCDADDCAD=2AB=4ADF=90°

求证:ACFB

求二面角EFBC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m∈R,复数z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i为虚数单位.
(1)当m为何值时,复数z是虚数?
(2)当m为何值时,复数z是纯虚数?
(3)当m为何值时,复数z所对应的点在复平面内位于第四象限?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{bn}满足bn=3bn1+2(n≥2),b1=1.数列{an}的前n项和为Sn , 满足Sn=4an+2
(1)求证:{bn+1}是等比数列并求出数列{bn}的通项公式;
(2)求数列{an}的通项公式和前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.

(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为 ,求该圆形标志物的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O:x2+y2=r2(r>0),点P为圆O上任意一点(不在坐标轴上),过点P作倾斜角互补的两条直线分别交圆O于另一点A,B.
(1)当直线PA的斜率为2时,
①若点A的坐标为(﹣ ,﹣ ),求点P的坐标;
②若点P的横坐标为2,且PA=2PB,求r的值;
(2)当点P在圆O上移动时,求证:直线OP与AB的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 的中点,底面为矩形, ,且平面平面,平面与棱交于点,平面与平面交于直线.

(1)求证:

(2)求与平面所成角的正弦值为,求的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足记数列的前项和为

1)求证:数列为等比数列,并求其通项

2)求

3)问是否存在正整数,使得成立?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C对边分别为a,b,c,已知A=60°,a= ,sinB+sinC=6 sinBsinC,则△ABC的面积为

查看答案和解析>>

同步练习册答案