精英家教网 > 高中数学 > 题目详情

【题目】已知a,b,c均大于1,且logaclogbc=4,则下列各式中,一定正确的是(
A.ac≥b
B.ab≥c
C.bc≥a
D.ab≤c

【答案】B
【解析】解:∵a、b、c均大于1,logaclogbc=4, ∴logcalogcb=
∴logca、logcb大于零,
则logcalogcb≤ (logca+logcb)2
(logca+logcb)2
∴(logca+logcb)2≥1,
∴(logcab)2≥1,
∴logcab≥1或logcab≤﹣1,当且仅当logca=logcb,即a=b时取等号,
∵a、b、c均大于1,
∴logcab>1,
解得ab≥c,
故选:B
【考点精析】本题主要考查了对数的运算性质的相关知识点,需要掌握①加法:②减法:③数乘:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】试分别用综合法、分析法、反证法等三种方法,证明下列结论:已知0<a<1,则 + ≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于分的学生进入第二阶段比赛.现有名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.

(1)估算这名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;

(2)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得分,进入最后强答阶段.抢答规则:抢到的队每次需猜条谜语,猜对条得分,猜错条扣分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对每条谜语的概率均为,猜对第条的概率均为.若这两条抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体EFABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,ABCDADDCAD=2AB=4ADF=90°

求证:ACFB

求二面角EFBC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的极值;

(2)设,对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是(
A.﹣1是f(x)的零点
B.1是f(x)的极值点
C.3是f(x)的极值
D.点(2,8)在曲线y=f(x)上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右顶点与右焦点的距离为,短轴长为

(I)求椭圆的方程;

)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m∈R,复数z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i为虚数单位.
(1)当m为何值时,复数z是虚数?
(2)当m为何值时,复数z是纯虚数?
(3)当m为何值时,复数z所对应的点在复平面内位于第四象限?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 的中点,底面为矩形, ,且平面平面,平面与棱交于点,平面与平面交于直线.

(1)求证:

(2)求与平面所成角的正弦值为,求的余弦值.

查看答案和解析>>

同步练习册答案