精英家教网 > 高中数学 > 题目详情

【题目】已知动圆M经过点A(3,0),且与直线l:x=﹣3相切,动圆圆心M的轨迹方程为

【答案】y2=12x
【解析】解:法一:设动点M(x,y),设⊙M与直线l:x=﹣3的切点为N,则|MA|=|MN|,即动点M到定点A和定直线l:x=﹣3的距离相等,所以点M的轨迹是抛物线,且以A(3,0)为焦点,以直线l:x=﹣3为准线,
=3,∴p=6.
∴圆心M的轨迹方程是y2=12x.
法二:设动点M(x,y),则点M的轨迹是集合P={M||MA|=|MN|},
,化简,得y2=12x.
∴圆心M的轨迹方程为y2=12x
【考点精析】解答此题的关键在于理解抛物线的定义的相关知识,掌握平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆右顶点与右焦点的距离为,短轴长为

(I)求椭圆的方程;

)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.

(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为 ,求该圆形标志物的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 的中点,底面为矩形, ,且平面平面,平面与棱交于点,平面与平面交于直线.

(1)求证:

(2)求与平面所成角的正弦值为,求的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式(m+1)x2﹣4x+1≤0(m∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足记数列的前项和为

1)求证:数列为等比数列,并求其通项

2)求

3)问是否存在正整数,使得成立?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则( )

A.以上四个图形都是正确的
B.只有(2)(4)是正确的
C.只有(4)是错误的
D.只有(1)(2)是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与直线3x4y70垂直,且与原点的距离为6的直线方程;

(2)求经过直线l12x3y50l27x15y10的交点,且平行于直线x2y30的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,是等比数列,且,则下列结论正确的是( )

A. B.

C. D. ,使得

查看答案和解析>>

同步练习册答案