精英家教网 > 高中数学 > 题目详情
2.在平面直角坐标系xOy中.以原点O为极点,x轴的正半轴为极轴建立坐标系.已知点P的极坐标为(1,$\frac{π}{6}$).曲线C的极坐标方程为ρ=4cosθ.过点P的直线l交曲线C于M,N两点.
(1)若在直角坐标系下直线1的倾斜角为α,求直线1的参数方程和曲线C的普通方程;
(2)求|PM|•|PN|的值.

分析 (1)点P的极坐标为(1,$\frac{π}{6}$),利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$化为直角坐标.利用点斜式即可得出直线l的参数方程.曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化为直角坐标方程.
(2)把直线l的参数方程代入曲线C的方程可得:t2+$(\sqrt{3}cosα+sinα-4cosα)$t+1-2$\sqrt{3}$=0.利用|PM|•|PN|=|t1t2|即可得出.

解答 解:(1)点P的极坐标为(1,$\frac{π}{6}$)化为:直角坐标$(\frac{\sqrt{3}}{2},\frac{1}{2})$.
∴直线l的参数方程为:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}+tcosα}\\{y=\frac{1}{2}+tsinα}\end{array}\right.$(t为参数).
曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程:x2+y2=4x.
(2)把直线l的参数方程:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}+tcosα}\\{y=\frac{1}{2}+tsinα}\end{array}\right.$(t为参数)代入曲线C的方程可得:t2+$(\sqrt{3}cosα+sinα-4cosα)$t+1-2$\sqrt{3}$=0.
∴t1t2=1-2$\sqrt{3}$.
∴|PM|•|PN|=|t1t2|=2$\sqrt{3}$-1.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.对数列{an},{bn},若对任意的正整数n,都有[an+1,bn+1]?[an,bn]且$\lim_{n→∞}({{b_n}-{a_n}})=0$,则称[a1,b1],[a2,b2],…为区间套.下列选项中,可以构成区间套的数列是(  )
A.${a_n}=\frac{n}{n+1},{b_n}=\frac{2n+1}{n}$B.${a_n}=\frac{n}{n+1},{b_n}=\frac{n+2}{n+3}$
C.${a_n}={(\frac{1}{2})^n},{b_n}={(\frac{2}{3})^n}$D.${a_n}=1-{(\frac{1}{2})^n},{b_n}=1+{(\frac{1}{3})^n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:
价格x55.56.57
销售量y121064
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y=$\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.$\sum_{i=1}^4{{x_i}^2}={5^2}+{5.5^2}+{6.5^2}+{7^2}$=146.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$C_{10}^x=C_{10}^{3x-2}$,则x=(  )
A.1B.9C.1或2D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线(x+y-3)$\sqrt{{x}^{2}+{y}^{2}-25}$=0所表示的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的首项a1=1,前n项和Sn满足Sn+1=2Sn+1(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=x2-ln(x+a)+b,g(x)=x3
(1)若函数f(x)在点(0,f(0))处的切线方程是x+y=0,求实数a,b的值;
(Ⅱ)在(Ⅰ)的条件下,当x∈(0,+∞)时,求证:f(x)<g(x);
(Ⅲ)证明:对于任意的正整数n,不等式1+$\frac{1}{{e}^{4}}$+$\frac{1}{{e}^{18}}$+…+$\frac{1}{{e}^{(n-1{)n}^{2}}}$<$\frac{n(n+3)}{2}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知公比为2的等比数列{an}的前n项和为Sn,若a4+a5+a6=16,则S9=(  )
A.56B.128C.144D.146

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a<b,比较1-a3与1-b3的大小.

查看答案和解析>>

同步练习册答案