分析 (1)求出函数f(x)的导数,根据f′(0)=-1,f(0)=0,求出a,b的值即可;
(2)先求出f(x)的表达式,令g(x)=f(x)-x3在(0,+∞)上单调递减,从而得证;
(3)由(2)可知x2-x3<ln(x+1)(x∈(0,+∞)),变形为e(1-x)x2<x+1 (x∈(0,+∞)),相加计算即可.
解答 解:(1)∵f(0)=-lna+b=0,∴lna=b,
而f′(x)=2x-$\frac{1}{x+a}$,
f′(0)=-$\frac{1}{a}$=-1,解得:a=1,
∴b=ln1=0;
(2)由(1)得:f(x)=x2-ln(x+1),g(x)=x3,
令h(x)=f(x)-x3=-x3+x2-ln(x+1),
则g′(x)=-3x2+2x-$\frac{1}{x+1}$=-$\frac{{3x}^{3}{+(x-1)}^{2}}{x+1}$,
显然,当x∈(0,+∞)时,g′(x)<0,即函数g(x)在(0,+∞)上单调递减,
又因为g(0)=0,所以当x∈(0,+∞)时,恒有g(x)<g(0)=0,
即f(x)-x3<0恒成立,故当x∈(0,+∞)时,有f(x)<x3.
(3)由(2)可知x2-x3<lnx<ln(x+1)(x∈(0,+∞)),
所以ex2-x3<eln(x+1),即e(1-x)x2<x+1(x∈(0,+∞)),
当x取自然数时,有e${\;}^{(1-n){n}^{2}}$<n+1(n∈N*),
所以e0+e-1×4+e-2×9+…+e${\;}^{(1-n){n}^{2}}$
<(1+1)+(2+1)+(3+1)+…+(n+1)
=1×n+1+2+3+4+…+n
=n+$\frac{n(n+1)}{2}$=$\frac{n(n+3)}{2}$.
点评 本题考查利用导数研究函数的单调性,以及函数单调区间等有关基础知识,应用导数研究函数单调性的方法及推理和运算能力.
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{5}$ | B. | $2\sqrt{5}-1$ | C. | $2\sqrt{5}+1$ | D. | $2\sqrt{5}-2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com