精英家教网 > 高中数学 > 题目详情
已知λ,θ∈R,向量
a
=(cosλθ,cos(10-λ)θ),
b
=(sin(10-λ)θ,sinλθ),
(Ⅰ)求|
a
|2+|
b
|2的值
(Ⅱ)如果θ=
π
20
,求证:
a
b
考点:向量的模,平行向量与共线向量
专题:平面向量及应用
分析:(1)利用向量数量积的性质即可得出;
(2)利用向量共线定理即可得出.
解答: (1)解:|
a
|2+|
b
|2=cos2λθ+cos2(10-λ)θ+sin2(10-λ)θ+sin2λθ=2;
(2)证明:∵cos(10-λ)θsin(10-λ)θ-cosλθsinλθ
=
1
2
sin(20-2λ)θ
-
1
2
sin2λθ

=
1
2
sin(20-2λ)
π
20
-
1
2
sin2λ•
π
20

=
1
2
sin(π-
λπ
10
)-
1
2
sin
λπ
10

=
1
2
sin
λπ
10
-
1
2
sin
λπ
10

=0.
a
b
点评:本题考查了向量数量积的性质、向量共线定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输入a=2,b=2,那么输出的a值为(  )
A、log316
B、256
C、16
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AB⊥AC,AD⊥BC,∠ABC=
π
3
,AD=
3
,现沿AD把△ABC折起,使BD⊥DC,E是BC上的中点.
(1)求AE与DB所成角的余弦值;
(2)在线段AB上是否存在一点F,使DF⊥AE?若存在,求出
BF
BA
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),|
a
-
b
|=
10
5

(1)求cos(α-β)的值;
(2)若0<α<
π
2
,-
π
2
<β<0,且sinβ=-
5
13
,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C方程:
x2
a2
+
y2
b2
=1(a>b>0),其长轴长为4,M(x0,y0)是椭圆C上任意一点,F(c,0)是椭圆的右焦点.
(1)证明:|MF|=2-
c
2
x0
(2)不过焦点F的直线l与圆x2+y2=b2相切于点Q,并与椭圆C交于A,B两点,且直线l和切点Q都在y轴的右侧,则△ABF的周长是否为定值,若是求出该定值,不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列算式:13=1.23=3+5,33=7+9+11,43=13+15+17+19,…若某数m3按上述规律展开后,发现等式右边含有“2013”这个数,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2).
(1)证明数列{
1
an
}是等差数列;
(2)求数列{an}的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
1
c
   
b
4
(b,c为实数).若矩阵A属于特征值2的一个特征向量为
2
1

(Ⅰ)求矩阵A的逆矩阵A-1
(Ⅱ)求直线x+y-1=0在矩阵A-1对应的变换作用下得到的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+2),则f′(-1)=
 

查看答案和解析>>

同步练习册答案