精英家教网 > 高中数学 > 题目详情

(本题12分)
已知平面,且是垂足,

证明:

先证,再证,进而求得

解析试题分析:
证明:因为,所以,
又因为所以,                                       ……4分
同理可证,                                                  ……6分
又因为,所以
所以.                                                      ……12分
考点:本小题主要考查空间中线面垂直的证明,考查学生的空间想象能力和推理能力.
点评:线面垂直的判定定理中强调平面内的两条直线相交,这点不要忘记.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直角梯形中,,将沿折起,使平面平面,得到几何体,如图2所示.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.

(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明结论;
(3)若AB=2,求三棱锥B﹣CED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为1的正方体中.

(1)求异面直线所成的角;
(2)求证平面⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足

(1)证明:PN⊥AM
(2)若,求直线AA1与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图,俯视图,在直观图中,MBD的中点,NBC的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求该几何体的体积;
(2)求证:AN∥平面CME
(3)求证:平面BDE⊥平面BCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是侧面全等的四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(Ⅰ)求该安全标识墩的体积;
(Ⅱ)证明:直线BD平面PEG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)一个圆锥,它的底面直径和高均为.
(1)求这个圆锥的表面积和体积.
(2)在该圆锥内作一内接圆柱,当圆柱的底面半径和高分别为多少时,它的侧面积最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是矩形,⊥平面.

(1)求证:⊥平面
(2)求二面角余弦值的大小;
(3)求点到平面的距离.

查看答案和解析>>

同步练习册答案