精英家教网 > 高中数学 > 题目详情
10.已知α是第三象限角,化简$\frac{cosθ}{\sqrt{1-co{s}^{2}θ}}$+$\frac{sinθ\sqrt{1-si{n}^{2}θ}}{1-co{s}^{2}θ}$.

分析 直接利用同角三角函数的基本关系式化简求解即可.

解答 解:α是第三象限角,
$\frac{cosθ}{\sqrt{1-co{s}^{2}θ}}$+$\frac{sinθ\sqrt{1-si{n}^{2}θ}}{1-co{s}^{2}θ}$
=$\frac{cosθ}{-sinθ}$+$\frac{-sinθcosθ}{si{n}^{2}θ}$
=-2cotθ.

点评 本题考查同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.里氏地震M的计算公式为:M=lgA-lgA0,其中A测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,则7级地震的最大振幅是4级地震最大振幅的103倍.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出六个关系式:①0∈∅;②∅∈{∅};③∅?{0};④∅≠{∅};⑤∅?{∅};⑥∅≠{0}.其中正确命题的个数是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求正整数列前n个偶数的和;
(2)求正整数列前n个奇数的和;
(3)在三位正整数的集合中有多少个数是5的倍数?求它们的和.
(4)在正整数集合中有多少个三位数?求它们的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把区间[1,3]n等分,所得每个小区间的长度△x等于(  )
A.$\frac{1}{n}$B.$\frac{2}{n}$C.$\frac{1}{2n}$D.$\frac{3}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.Sn是数列{an}的前n项和,且a1=1,an+1=2an+n-1,S10=1991.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正方形ABCD与梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(Ⅰ)求证:MB∥平面PDC;
(Ⅱ)求二面角M-PC-D的余弦值;
(Ⅲ)E为线段PC上一点,若直线DE与直线PM所成的角为60°,求PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,在区间(0,+∞)上是增函数的是(  )
A.y=-4x+5B.y=9-x2C.y=($\frac{1}{2}$)xD.y=|x|

查看答案和解析>>

同步练习册答案