精英家教网 > 高中数学 > 题目详情
15.Sn是数列{an}的前n项和,且a1=1,an+1=2an+n-1,S10=1991.

分析 由数列{an}满足a1=1,an+1=2an+n-1,变形为an+1+(n+1)=2(an+n),即可数列{an+n}是等比数列,其中首项为a1+1=2,公比为2.求出通项公式
再利用等比数列的通项公式、等比数列与等差数列的前n项和公式即可得出,代值计算即可.

解答 解:由数列{an}满足a1=1,an+1=2an+n-1,变形为an+1+(n+1)=2(an+n).
∴数列{an+n}是等比数列,其中首项为a1+1=2,公比为2,
∴an+n=2×2n-1
∴an=2n-n
∴Sn=$\frac{2({2}^{n}-1)}{2-1}$-$\frac{n(n+1)}{2}$=2n+1-2-$\frac{n(n+1)}{2}$,
∴S10=211-2-$\frac{10(10+1)}{2}$=1991
故答案为:1991.

点评 本题考查了数列的递推公式和等比数列的通项公式、等比数列与等差数列的前n项和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}、{bn}的每一项都是正数,a1=12,b1=8且2$\sqrt{{b}_{n}}$=$\sqrt{{b}_{n-1}}$+$\sqrt{{b}_{n+1}}$(n≥2)又bn,an,bn+1成等比数列一切n∈N*恒成立
(1)求数列{an}、{bn}的通项公式;
(2)设Cn=2n-1-(an-bn),若cn的前n项和为Sn,不等式Sn>nλbn对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知复数z1∈{z||z-i|=|z+1|},z2∈{z||z-2|=1},求|z1-z2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2-5x+4<0},B={x|x≤m},
(1)若A⊆B,求实数m的取值范围;
(2)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知α是第三象限角,化简$\frac{cosθ}{\sqrt{1-co{s}^{2}θ}}$+$\frac{sinθ\sqrt{1-si{n}^{2}θ}}{1-co{s}^{2}θ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线x-y-m=0被圆x2+y2-8x+12=0所截得的弦长为$2\sqrt{2}$,则实数m的值为(  )
A.2或6B.0或8C.2或0D.6或8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若方程E:$\frac{x^2}{1-m}-\frac{y^2}{m-2}$=1表示焦点在y轴上的双曲线,则实数m的取值范围为(  )
A.(1,2)B.(-∞,1)∪(2,+∞)C.(-∞,2)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(1,x).
(Ⅰ)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),求|$\overrightarrow{b}$|的值;
(Ⅱ)若$\overrightarrow{a}$+2$\overrightarrow{b}$=(4,-7),求向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=2$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(Ⅰ)指出函数f(x)的值域;
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+6)的值.

查看答案和解析>>

同步练习册答案