9£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2£¬-1£©£¬$\overrightarrow{b}$=£¨1£¬x£©£®
£¨¢ñ£©Èô$\overrightarrow{a}$¡Í£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©£¬Çó|$\overrightarrow{b}$|µÄÖµ£»
£¨¢ò£©Èô$\overrightarrow{a}$+2$\overrightarrow{b}$=£¨4£¬-7£©£¬ÇóÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇµÄ´óС£®

·ÖÎö £¨I£©ÓÉÏòÁ¿µÄ¼Ó·¨ºÍÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬¿ÉµÃx=7£¬ÔÙÓÉÏòÁ¿µÄÄ£µÄ¹«Ê½¼ÆËã¼´¿ÉµÃµ½ËùÇó£»
£¨II£©ÔËÓÃÏòÁ¿µÄ¼Ó·¨ÔËË㣬¿ÉµÃx=-3£¬ÔÙÓÉÏòÁ¿µÄ¼Ð½Ç¹«Ê½cos£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$£¬¼ÆËã¼´¿ÉµÃµ½ËùÇó¼Ð½Ç£®

½â´ð ½â£º£¨I£©ÒÀÌâÒâ¿ÉµÃ£¬$\overrightarrow{a}$+$\overrightarrow{b}$=£¨3£¬-1+x£©£¬
ÓÉ$\overrightarrow{a}$¡Í£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©£¬¿ÉµÃ£¬$\overrightarrow{a}$•£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©=0£¬
¼´6+1-x=0£¬
½âµÃx=7£¬¼´$\overrightarrow{b}$=£¨1£¬7£©£¬
ËùÒÔ$|b|=\sqrt{50}=5\sqrt{2}$£»
£¨II£©ÒÀÌâÒâ$\overrightarrow{a}$+2$\overrightarrow{b}$=£¨4£¬2x-1£©=£¨4£¬-7£©£¬
¿ÉµÃx=-3£¬¼´$\overrightarrow{b}$=£¨1£¬-3£©£¬$\frac{2+3}{\sqrt{5}•\sqrt{10}}$
ËùÒÔcos£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{2+3}{\sqrt{5}•\sqrt{10}}$=$\frac{\sqrt{2}}{2}$£¬
ÒòΪ£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾¡Ê[0£¬¦Ð]£¬
ËùÒÔ$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½Ç´óСÊÇ$\frac{¦Ð}{4}$£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄÔËË㣬Ö÷Òª¿¼²éÏòÁ¿µÄÄ£µÄÇ󷨺ͼнǵÄÇ󷨣¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¡÷ABCµÄÈý½ÇÐÎA£¬B£¬CËù¶ÔÈý±ß·Ö±ðÊÇa£¬b£¬c£¬B=60¡ã£¬cosC=$\frac{4}{5}$£¬b=$\sqrt{3}$£¬ÔòsinA=$\frac{3+4\sqrt{3}}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®SnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒa1=1£¬an+1=2an+n-1£¬S10=1991£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒa1=-1£¬an+1=Sn•Sn+1£¬ÔòÊýÁÐ{an}µÄͨÏʽan=$\left\{\begin{array}{l}{-1£¬n=1}\\{\frac{1}{n£¨n-1£©}£¬n¡Ý2}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Õý·½ÐÎABCDÓëÌÝÐÎAMPDËùÔ򵀮½Ã滥Ïà´¹Ö±£¬AD¡ÍPD£¬MA¡ÎPD£¬MA=AD=$\frac{1}{2}$PD=1£®
£¨¢ñ£©ÇóÖ¤£ºMB¡ÎÆ½ÃæPDC£»
£¨¢ò£©Çó¶þÃæ½ÇM-PC-DµÄÓàÏÒÖµ£»
£¨¢ó£©EΪÏß¶ÎPCÉÏÒ»µã£¬ÈôÖ±ÏßDEÓëÖ±ÏßPMËù³ÉµÄ½ÇΪ60¡ã£¬ÇóPEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èçͼ£¬ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬Éè AD=AA1=1£¬AB=2£¬PÊÇC1D1µÄÖе㣬Ôò$\overrightarrow{{B_1}C}Óë\overrightarrow{{A_1}P}$Ëù³É½ÇµÄ´óСΪ60¡ã£¬$\overrightarrow{{B_1}C}•\overrightarrow{{A_1}P}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸ø¶¨º¯Êý¢Ùy=x${\;}^{\frac{1}{2}}$¢Úy=log${\;}_{\frac{1}{2}}$£¨x+1£©¢Ûy=|x2-2x|¢Üy=£¨$\frac{5}{6}$£©x£¬ÆäÖÐÔÚÇø¼ä£¨0£¬1£©Éϵ¥µ÷µÝ¼õµÄº¯ÊýÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÜB£®¢Ú¢ÜC£®¢Ú¢ÛD£®¢Ù¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬ÇÒcos£¨¦Á+$\frac{¦Ð}{3}$£©=-$\frac{3}{5}$£¬Ôòsin¦ÁµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{3-4\sqrt{3}}{10}$B£®$\frac{3+4\sqrt{3}}{10}$C£®$\frac{4-3\sqrt{3}}{10}$D£®$\frac{4+3\sqrt{3}}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÉèÏòÁ¿$\overrightarrow{a}$=£¨1£¬4cosx£©£¬$\overrightarrow{b}$=£¨4$\sqrt{3}$sinx£¬1£©£¬x¡ÊR£®
£¨1£©Èôx¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬ÇÒ|$\overrightarrow{a}$|=$\sqrt{2}$£¬Çósin£¨x+$\frac{¦Ð}{4}$£©£¬cos2x£¬tan2xµÄÖµ£»
£¨2£©É躯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬Çóf£¨x£©ÔÚ[0£¬¦Ð]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸