| A. | $\frac{3-4\sqrt{3}}{10}$ | B. | $\frac{3+4\sqrt{3}}{10}$ | C. | $\frac{4-3\sqrt{3}}{10}$ | D. | $\frac{4+3\sqrt{3}}{10}$ |
分析 由条件利用同角三角函数的基本关系求得sin(α+$\frac{π}{3}$)的值,再利用两角差的正弦公式求得sinα=sin[(α+$\frac{π}{3}$)-$\frac{π}{3}$]的值.
解答 解:∵α∈(0,$\frac{π}{2}$),且cos(α+$\frac{π}{3}$)=-$\frac{3}{5}$,
∴α+$\frac{π}{3}$为钝角,sin(α+$\frac{π}{3}$)=$\sqrt{{1-sin}^{2}(α+\frac{π}{3})}$=$\frac{4}{5}$,
则sinα=sin[(α+$\frac{π}{3}$)-$\frac{π}{3}$]=sin(α+$\frac{π}{3}$)cos$\frac{π}{3}$-cos(α+$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{4}{5}•\frac{1}{2}$-(-$\frac{3}{5}$)•$\frac{\sqrt{3}}{2}$=$\frac{4+3\sqrt{3}}{10}$,
故选:D.
点评 本题主要考查同角三角函数的基本关系的应用,两角差的正弦公式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{{\sqrt{3}}}{3}]$ | B. | $(0,\sqrt{3}]$ | C. | $[0,\frac{{\sqrt{3}}}{3}]$ | D. | $[0,\sqrt{3}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2} | B. | {2,3} | C. | {1,2,4} | D. | {2,3,4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com