精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)(c>0)作斜率为
3
3
的直线交双曲线右支于点P,E为FP的中点,O为坐标原点,且OE⊥FP,则双曲线离心率为 (  )
A、
2
+1
B、
3
+1
C、2
D、3
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意,设右焦点为F′,则∠FPF′=90°,由斜率为
3
3
的直线交双曲线右支于点P,可得PF′=c,PF=
3
c.利用双曲线的定义,即可求出双曲线离心率.
解答: 解:由题意,设右焦点为F′,则
∵E为FP的中点,O为坐标原点,
∴OE∥PF′,
∵OE⊥FP,
∴∠FPF′=90°,
∵斜率为
3
3
的直线交双曲线右支于点P,
∴PF′=c,PF=
3
c,
∴(
3
-1)c=2a,
∴e=
c
a
=
2
3
-1
=
3
+1.
故选:B.
点评:本题考查双曲线离心率,考查学生的计算能力,确定PF′=c,PF=
3
c是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=|x|,则函数y=f(x)的图象与函数y=|log4x|图象的交点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线kx2-y2=1(k>0)的一条渐近线与直线2x+y-3=0垂直,则双曲线的离心率是(  )
A、
5
2
B、
3
2
C、4
3
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2009+bsinx+1,且f(m)=2,则f(-m)=(  )
A、0B、1C、4D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

当输入x=-4时,如图的程序运行的结果是(  )
A、7B、8C、9D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线x2-y2=1的右焦点且斜率是1的直线与双曲线的交点个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别是A1D1、A1C1的中点,则异面直线AE与CF所成的角的余弦值为(  )
A、
3
2
B、
3
30
10
C、
30
10
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(ωx+φ)(ω>0)的图象经过A(-
π
6
,-2)、B(
π
4
,2)两点,则ω(  )
A、最大值为3
B、最小值为3
C、最大值为
12
5
D、最小值为
12
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥A-BCD中,平面ACB⊥平面BCD.在等腰直角三角形ABC中,AC=AB,AC=6,在Rt△BCD中,BC⊥BD,∠BCD=30°
(1)求证:平面ABD⊥平面ACD;
(2)求三棱锥C-ABD的体积.

查看答案和解析>>

同步练习册答案