精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2009+bsinx+1,且f(m)=2,则f(-m)=(  )
A、0B、1C、4D、-1
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:令g(x)=ax2009+bsinx,判断出g(x)为奇函数,利用g(x)的奇偶性来解决.
解答: 解:令g(x)=ax2009+bsinx,通过观察可知g(x)为奇函数,
f(m)=g(m)+1=2,
∴g(m)=1,
∴f(-m)=g(-m)+1=-g(m)+1=0,
故选:A.
点评:本题主要考查了函数奇偶性的性质.解题的关键是把函数分解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

F1、F2为椭圆的两个焦点,过F2的直线交椭圆于A、B两点,AF1⊥AB,且|AF1|=|AB|,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=-
1
2
x2+blnx在[1,+∞)上是减函数,则b的取值范围是(  )
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,1]
D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率是2,焦点坐标是(0,-4)(0,4)则双曲线的方程为(  )
A、
x2
4
-
y2
12
=1
B、
y2
4
-
x2
12
=1
C、
x2
10
-
y2
6
=1
D、
y2
6
-
x2
10
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=ln
x2+1
|x|
(x∈R,x≠0),有下列命题:
①函数y=f(x)的图象关于y轴对称;
②在区间(-∞,0)上,f(x)是减函数;
③函数y=f(x)的最小值是ln2;    
④在区间(-∞,0)上,f(x)是增函数.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1F2是椭圆C1
x2
9
+
y2
5
=1与双曲线C2的公共焦点,点P是曲线C1与C2的一个公共点,且|
OP
|=
61
3
(其中点O为坐标原点),则双曲线C2离心率为(  )
A、
2
B、
3
2
C、2
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)(c>0)作斜率为
3
3
的直线交双曲线右支于点P,E为FP的中点,O为坐标原点,且OE⊥FP,则双曲线离心率为 (  )
A、
2
+1
B、
3
+1
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=2cos2x的图象,需要把函数y=sin2x的图象(  )
A、向右平移
π
4
个单位,再向上平移1个单位
B、向左平移
π
4
个单位,再向上平移1个单位
C、向左平移
π
4
个单位,再向下平移1个单位
D、向右平移
π
4
个单位,再向下平移1个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

若目标函数z=x+y中变量x,y满足约束条件
x+2y≤8
0≤x≤4
0≤y≤3

(1)试确定可行域的面积;
(2)求出该线性规划问题中所有的最优解.

查看答案和解析>>

同步练习册答案