精英家教网 > 高中数学 > 题目详情
计算:sin10°cos110°+cos170°sin70°.
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:利用诱导公式把要求的式子化为-sin10°cos70°-cos10°sin70°,再利用两角和的正弦公式计算求得结果.
解答: 解:sin10°cos110°+cos170°sin70°
=-sin10°cos70°-cos10°sin70°
=-sin(10°+70°)
=-sin80°.
点评:本题主要考查诱导公式、两角和的正弦公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=2cos2ωx的最小正周期为π,则f(
π
4
)的值等于(  )
A、2
B、1+
2
2
C、1
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合U={1,2,3,4,5},M={l,3,5},则∁UM=(  )
A、{1,2,4}
B、{1,3,5}
C、{2,4}
D、U

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x+2y-4≥0
x-y-4≤0
y≤a
所表示的平面区域的面积等于6,则a的值为(  )
A、1
B、
2
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
2a+i
1-2i
•i2014(i是虚数单位)为纯虚数,则实数a的值为(  )
A、
1
4
B、-
1
4
C、1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=cos2x+4sinx.
(Ⅰ)求f′(-
π
4
)的值;
(Ⅱ)求f(x)的最大值以及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[a,b]上的函数,若存在c∈(a,b),使得f(x)在[a,c]上单调递减,在[c,b]上单调递增,则称f(x)为[a,b]上单谷函数,c为谷点.
(1)已知m∈R,判断函数f(x)=
1
3
x3-
m+1
2
x2+mx是否为区间[0,2]上的单谷函数;
(2)已知函数fn(x)(n∈N*且n≥2)的导函数f′n=xn+…+x2+x+3•(
2
3
n-2.
①证明:fn(x)为区间[0,
2
3
]上的单谷函数:
②记函数fn(x)在区间[0,
2
3
]上的峰点为xn,证明:xn+1>xn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G的离心率为
2
2
,其短轴两端点为A(0,1),B(0,-1).
(Ⅰ)求椭圆G的方程;
(Ⅱ)若C、D是椭圆G上关于y轴对称的两个不同点,直线AC、BD与x轴分别交于点M、N.判断以MN为直径的圆是否过点A,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角三角形ABC的斜边长AB=2,现以斜边AB为轴旋转一周,得旋转体.
(1)当∠A=30°时,求此旋转体的体积;
(2)当∠A=45°时,求旋转体表面积.

查看答案和解析>>

同步练习册答案