精英家教网 > 高中数学 > 题目详情
1.在△ABC中,内角A,B,C的对边分别为a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求C
(2)若△ABC的面积为5$\sqrt{3}$,b=5,求sinA.

分析 (1)移项,利用两角和的余弦函数公式,三角形内角和定理,二倍角的余弦函数公式,诱导公式化简已知可得2cos2C+3cosC-2=0,进而解得cosC,结合范围0<C<π,即可得解C的值.
(2)由已知利用三角形面积公式可求a,由余弦定理可得c的值,进而利用正弦定理即可解得sinA的值.

解答 (本题满分为12分)
解:(1)∵3cosAcosB+1=3sinAsinB+cos2C,
∴3(cosAcosB-sinAsinB)+1=cos2C,
可得:3cos(A+B)+1=cos2C,…2分
∴-3cosC+1=2cos2C-1,
可得:2cos2C+3cosC-2=0,…4分
可得:(2cosC-1)(cosC+2)=0,
∴解得:cosC=$\frac{1}{2}$或cosC=-2(舍去),…5分
∵0<C<π,
∴C=$\frac{π}{3}$…6分
(2)∵S△ABC=$\frac{1}{2}$absinC=5$\sqrt{3}$,b=5,C=$\frac{π}{3}$,可得:a=4,…8分
∵由余弦定理可得:c2=a2+b2-2abcosC=16+25-2×$4×5×\frac{1}{2}$=21,可得:c=$\sqrt{21}$,…10分
∴由正弦定理可得:sinA=$\frac{asinC}{c}$=$\frac{4×\frac{\sqrt{3}}{2}}{\sqrt{21}}$=$\frac{2\sqrt{7}}{7}$…12分

点评 本题主要考查了两角和的余弦函数公式,三角形内角和定理,二倍角的余弦函数公式,诱导公式,三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3-x+3.
(Ⅰ)求f(x)在x=1处的切线方程;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x4cosx+mx2+x(m∈R),若其导函数f′(x)在区间[-2,2]上有最大值为9,则导函数f′(x)在区间[-2,2]上的最小值为(  )
A.-5B.-7C.-9D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx.
(1)若对任意的实数a,函数f(x)与g(x)的图象在x=x0处的切线斜率总相等,求x0的值;
(2)对任意x≥1,不等式f(x)-g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知F1(-1,0),F2(1,0),且△PF1F2的周长为6.
(Ⅰ)求动点P轨迹C的方程;
(Ⅱ)若不过原点的直线l:y=kx+m与曲线C交于两个不同的点A、B,M为AB的中点,且M到F2的距离等于到直线x=-1的距离,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC内角A,B,C的对边分别是a,b,c,且满足$\sqrt{3}$asinC=c(cosA+1).
(I) 求角A的大小;
(Ⅱ)已知函数f(x)=sin(ωx+A)的最小正周期为π,求f(x)的减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数y=$\sqrt{{x}^{2}-4x+5}$+$\sqrt{{x}^{2}+2x+5}$的最小值.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(文)试卷(解析版) 题型:填空题

若函数的定义域为,值域为,则实数的取值范围是 .

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:解答题

下面用茎叶图记录了同班的甲、乙两名学生4次数学考试成绩,其中甲的一次成绩模糊不清,用标记.

(1)求甲生成绩的中位数与乙生成绩的众数;

(2)若甲、乙这4次的平均成绩相同,确定甲、乙中谁的成绩更稳定,并说明理由.

查看答案和解析>>

同步练习册答案