精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求曲线在点处的切线方程;

2)若上恒成立,求的取值范围.

【答案】1 2

【解析】

1)先求出,再利用点斜式即可得到答案.

2)函数上恒成立,等价于函数的最小值大于或等于0,在求的最小值时需分两种情况讨论即可.

解:(Ⅰ)当时,

因为

所以.

所以曲线在点处的切线方程为

2)函数上恒成立,等价于函数的最小值大于或等于0.

因为所以 .

①当时,显然

函数上单调递增,所以当时,有最小值

显然,所以符合条件.

②当时,令解得

时,

时,

函数上单调递增,所以当时,有最小值

时,显然.

函数上单调递增,所以当时,有最小值

依题意有,所以符合条件.

时,显然,不符合.

综上,若函数上恒成立,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,两两垂直,分别是的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知是椭圆的右焦点,直线与椭圆相切于点

1)若,求

2)若,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxx2﹣(6+ax+2alnxaR).

1)讨论fx)的单调性;

2)函数gxx2+2a4lnx1,若存在x0[1e],使得fx0)<gx0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】港珠澳大桥是中国境内一座连接中国香港、广东珠海和中国澳门的桥隧工程,因其超大的建筑规模、空前的施工难度以及顶尖的建造技术闻名世界,为内地前往香港的游客提供了便捷的交通途径,某旅行社分年龄统计了大桥落地以后,由香港大桥实现内地前往香港的老中青旅客的比例分别为,现使用分层抽样的方法从这些旅客中随机抽取名,若青年旅客抽到60人,则(

A.老年旅客抽到150B.中年旅客抽到20

C.D.被抽到的老年旅客以及中年旅客人数之和超过200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定一个数列在这个数列里任取项,并且不改变它们在数列中的先后次序,得到的数列称为数列的一个阶子数列

已知数列的通项公式为为常数,等差数列

数列的一个3阶子数列

1的值;

2等差数列的一个 阶子数列,且

为常数,,求证:

3等比数列的一个 阶子数列,

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.

的值,并估计该城市驾驶员交通安全意识强的概率;

已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;

安全意识强

安全意识不强

合计

男性

女性

合计

用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.

附:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元2019年,石室2160岁!文翁兴学2160周年纪念活动于2019119日在石室中学文庙校区运动场隆重召开,会场是由一个长,宽的长方形及两个以长方形宽为直径的半圆相接组成,整个会场关于中轴线对称,图形如下.

1)若两位同学分别在左右两个半圆弧上值勤,则两位同学在圆弧什么位置时相距最远,距离为多少?并说明原因.

2)在(1)问的情况下,若要在主会台后的会场边界上关于中轴线对称的两点处分别放置两个音响,为了达到最好听觉效果,两个音响的距离要足够大,同时两位同学听到两个音响传来的声音时间差不超过0.18秒,求音响距中轴线距离约为多少时为最佳放置点.(注:不超过0.18秒以秒计算,声音在空气中的传播速度为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,交于点.

(Ⅰ)在线段上找一点,使得平面,并证明你的结论;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案