| A. | 内心 | B. | 外心 | C. | 垂心 | D. | 重心 |
分析 由已知得AP是角BAC的平分线,由此求出P的轨迹一定通过三角形的内心.
解答 解:∵O是三角形ABC所在平面内一定点,动点P满足$\overrightarrow{AP}=λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}),λ∈{R^+}$,
∴$\overrightarrow{AP}$与∠BAC的平分线共线,∴AP是角BAC的平分线,
而三角形的内心为角平分线的交点,
∴三角形的内心在AP上,
即P的轨迹一定通过三角形的内心.
故选:A.
点评 本题考查点的轨迹的判断,考查平面向量、角平分线性质等基础知识,考查推理论证能力,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{8}-\frac{{y}^{2}}{8}$=1 | C. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{8}$=1 | D. | $\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -1或$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | -1或$-\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 恰有一个零点 | B. | 恰有两个零点 | C. | 恰有三个零点 | D. | 至多两个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{3-\sqrt{6}}{6}$,$\frac{3+\sqrt{6}}{6}$] | B. | [$\frac{3-\sqrt{6}}{6}$,1] | C. | [$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{6}$] | D. | [$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com