精英家教网 > 高中数学 > 题目详情
8.若平面α的一个法向量为$\overrightarrow{n}$=(-2,3,1),直线l的一个方向向量为$\overrightarrow{a}$=(1,-2,3),则l与α所成角的正弦值为$\frac{5}{14}$.

分析 设l与α所成角为θ,则sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{a}|}{|\overrightarrow{n}|•|\overrightarrow{a}|}$,由此能求出l与α所成角的正弦值.

解答 解:∵平面α的一个法向量为$\overrightarrow{n}$=(-2,3,1),直线l的一个方向向量为$\overrightarrow{a}$=(1,-2,3),
设l与α所成角为θ,
∴sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{a}|}{|\overrightarrow{n}|•|\overrightarrow{a}|}$=$\frac{|-2-6+3|}{\sqrt{4+9+1}•\sqrt{1+4+9}}$=$\frac{5}{14}$.
∴l与α所成角的正弦值为$\frac{5}{14}$.
故答案为:$\frac{5}{14}$.

点评 本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an},如果a4=4,a3+a7=10.
(1)求数列{an}的通项公式an
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求bn的前n和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知四边形ABCD为正方形,EA⊥平面ABCD,CF∥EA,且EA=$\sqrt{2}$AB=2CF=2
(1)求证:EC⊥平面BDF;
(2)求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-ax2-3x
(1)若函数f(x)在区间[1,+∞)上是增函数,求实数a的取值范围
(2)若x=-$\frac{1}{3}$是函数f(x)的极值点,求函数f(x)在[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线$\sqrt{3}$x-y-2=0的倾斜角为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知一个圆锥内接于球O(圆锥的底面圆周及顶点均在球面上),若球的半径R=5,圆锥的高是底面半径的2倍,则圆锥的体积为(  )
A.128πB.32πC.$\frac{128π}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知命题p:任意x∈R,sinx≤1,则非p是存在x0∈R,sinx0>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的最大值是(  )
A.2B.2$\sqrt{5}$C.3D.2+$\sqrt{3}$

查看答案和解析>>

同步练习册答案