精英家教网 > 高中数学 > 题目详情
3.若数列{an}是等差数列,首项a1>0,a2014+a2015>0,a2014•a2015<0,则使前n项和Sn>0成立的最大自然数n是(  )
A.4025B.4026C.4027D.4028

分析 根据条件得a2014>0,a2015<0,再由求和公式和性质可得S4027=4027a2014>0,S4028=2014(a2014+a2015)>0,S4029=4029a2015<0,易得结论.

解答 解:∵等差数列a{an}中1>0,a2014+a2015>0,a2014.a2015<0,
∴a2014>0,a2015<0,
∴S4027=$\frac{4027({a}_{1}+{a}_{4027})}{2}$=$\frac{4027×2{a}_{2014}}{2}$=4027a2014>0,
同理可得S4028=2014(a2014+a2015)>0,
S4029=$\frac{4029({a}_{1}+{a}_{4029})}{2}$=$\frac{4029×2{a}_{2015}}{2}$=4029a2015<0,
∴使前n项和Sn>0成立的最大自然数n为:4028.
故选:D

点评 本题考查等差数列的求和公式和性质,得出a2014>0,a2015<0是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知集合M={1,2,3,4,5},非空集合P满足:P⊆M,且若α∈P,则6-α∈P,则这样的集合P有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A={x}x=2k-1,k∈Z},B={x|x=4k+1,k∈Z},则A,B之间关系是A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={2,1-3a,a2+1},N={a2+a-4,2a+1,-1},且M∩N={2},则a的取值范围是(  )
A.{$\frac{1}{2}$}B.{2,-3}C.{-3,$\frac{1}{2}$}D.{-3,2,$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\frac{1+tanα}{1-tanα}$=2011,求$\frac{1}{cos2α}$+tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P(1,x)是角α终边上一点,sinα=$\frac{1}{2}$,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以x轴为对称轴的抛物线的通径(过焦点且与x轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为y2=±8x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.判断下列角是第几象限角,并在0°~360°范围内找出其终边相同的角.
(1)549°;
(2)-60°;
(3)-940°22′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设X~N(μ,1),求P(μ-3<X≤μ-2).

查看答案和解析>>

同步练习册答案