精英家教网 > 高中数学 > 题目详情
若f(a+b)=f(a)•f(b),且f(1)=2,则
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2013)
f(2012)
=______.
∵f(a+b)=f(a)•f(b),
f(a+b)
f(b)
=f(a),
又f(1)=2,f(1+1)=f(1)•f(1),
f(2)
f(1)
=f(1)=2,
同理可得,
f(3)
f(2)
=2,
f(4)
f(3)
=2,…,
f(2013)
f(2012)
=2,
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2013)
f(2012)
=2×(2012)=4024.
故答案为:4024.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知定义域为R上的函数单调递增,如果的值
A.可能为0B.恒大于0C.恒小于0D.可正可负

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=
x2|x|≥1
x|x<1
,若f(g(x))值域为[0,+∞),则g(x)的值域可能为(  )
A.(-∞,-1)∪[1,+∞)B.(-∞,-1]∪(0,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)=ax(a>0且a≠1)对于任意实数x、y都有(  )
A.f(xy)=f(x)•(y)B.f(xy)=f(x)+(y)C.f(x+y)=f(x)f(y)D.f(x+y)=f(x)+f(y)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f(
1
3
)的值;
(2)若满足f(x)+f(x-8)≤2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(1,10)B.(5,6)C.(10,12)D.(20,24)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若命题“恒成立”是真命题,则实数a的取值范围是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最小值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c图象的顶点为(-1,10),且方程ax2+bx+c=0的两根的平方和为12,求二次函数f(x)的表达式.

查看答案和解析>>

同步练习册答案