精英家教网 > 高中数学 > 题目详情

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有将;某顾客从此10张券中任取2张,求:

1)该顾客中奖的概率;

2)该顾客获得的奖品总价值(元)的概率分布列.

【答案】(12)由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值=2×8=16(元).

【解析】试题分析:(1)利用对立事件先求得求不中奖率为,再求中奖率;(2)由题分析可知的所有可能值为: ,求得每种情况的概率,可作出分布列.

试题解析:(1即该顾客中奖的概率为

2的所有可能值为:01020,50,60(元)

的分布列:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】5名男生4名女生站成一排,求满足下列条件的排法:

(1)女生都不相邻有多少种排法?

(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?

(3)男甲不在首位,男乙不在末位,有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于区间和函数,若同时满足:①上是单调函数;②函数 的值域还是,则称区间为函数的“不变”区间.

1求函数的所有“不变”区间.

2函数是否存在“不变”区间?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正项数列{}满足:,则称此数列为“比差等数列”.

(1)请写出一个“比差等数列”的前3项的值;

(2)设数列{}是一个“比差等数列”

(i)求证:

(ii)记数列{}的前项和为,求证:对于任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,三条边所对的角分别为A、B,C,向量=(),=(),且满足=

(1)求角C的大小;

(2)若sinA,sinC,sinB成等比数列,且 =﹣8,求边的值并求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点 ,且,记点 .

(Ⅰ)求直线的方程;

(Ⅱ)证明:线段与曲线有且只有一个异于的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4x的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A,B两点,连接MA,MB.

(1)求椭圆C的方程;

(2)当MA,MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整;

(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,ABDCAEDCBEAD.MN分别是ADBE上的点,且AM=BN,将三角形ADE沿AE折起,则下列说法正确的是 (填上所有正确说法的序号).

不论D折至何位置(不在平面ABC)都有MN平面DEC

不论D折至何位置都有MNAE

不论D折至何位置(不在平面ABC)都有MNAB

在折起过程中,一定存在某个位置,使ECAD.

查看答案和解析>>

同步练习册答案