ÉèÊýÁÐ{an}Âú×ã2n2-£¨¦Ë+an£©n+
3
2
an=0£¨¦Ë¡ÊR£¬n¡ÊN*£©£»µÈ±ÈÊýÁÐ{bn}µÄÊ×ÏîΪb1=2£¬¹«±ÈΪq£¨qΪÕýÕûÊý£©£¬ÇÒÂú×ã3b3ÊÇ8b1Óëb5µÄµÈ²îÖÐÏ
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÊÔÈ·¶¨¦ËµÄÖµ£¬Ê¹µÃÊýÁÐ{an}ΪµÈ²îÊýÁУ»
£¨3£©µ±{an}ΪµÈ²îÊýÁÐʱ£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚbkÓëbk+1Ö®¼ä²åÈëak¸ö2£¬µÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn} µÄǰnÏîºÍ£¬ÊÔÇóÂú×ãTm=2cm+1µÄËùÓÐÕýÕûÊým£®
¿¼µã£ºÊýÁеÄÇóºÍ,µÈ²îÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÔËÓõȲîÊýÁеÄÐÔÖʺ͵ȱÈÊýÁеÄͨÏʽ£¬¼´¿ÉÇó³ö¹«±È£¬µÃµ½Í¨Ïʽ£»
£¨2£©ÓÉÌõ¼þ½áºÏµÈ²îÊýÁеÄÐÔÖÊ£¬µÃµ½·½³Ì£¬½â³ö¦Ë£¬¼ìÑé¼´¿É£»
£¨3£©ÓÉ£¨1£©£¬£¨2£©£¬Öªbn=2n£¬ak=2k£¬ÓÉÒÑ֪д³öc1=a1=2£¬c2=c3=2£¬c4=a2=4£¬c5=c6=c7=c8=2£¬c9=a3=8£¬¡­£¬ÌÖÂÛm=1£¬2£¬m¡Ý3£¬Çó³öTm£¬2cm+1£¬Áгö·½³Ì£¬ÕûÀí£¬²¢ÌÖÂÛ·½³ÌµÄ½â£¬´Ó¶øµÃµ½½áÂÛ£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒâ6b3=8b1+b5£¬Ôò6q2=8+q4£¬½âµÃq2=4»ò2£¬
ÓÉÓÚqΪÕýÕûÊý£¬Ôòq=2£¬
ÓÖb1=2£¬¡àbn=2n£»
£¨2£©ÓÉÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÊýÁÐ{an}Âú×ã2n2-£¨¦Ë+an£©n+
3
2
an=0£¨¦Ë¡ÊR£¬n¡ÊN*£©£»
·Ö±ð´úÈën=1£¬2£¬3£¬ÓÖa1+a3=2a2£¬µÃ2¦Ë-4+12-2¦Ë=2£¨16-4¦Ë£©£¬
µÃ¦Ë=3£¬¶øµ±¦Ë=3ʱ£¬an=2n£¬
ÓÉan+1-an=2£¨³£Êý£©Öª´ËʱÊýÁÐ{an}ΪµÈ²îÊýÁУ¬
¹Ê¦Ë=3£®
£¨3£©ÓÉ£¨1£©£¬£¨2£©£¬Öªbn=2n£¬ak=2k£¬
ÓÉÌâÒâÖª£¬c1=a1=2£¬c2=c3=2£¬c4=a2=4£¬c5=c6=c7=c8=2£¬c9=a3=8£¬¡­£¬
Ôòµ±m=1ʱ£¬T1¡Ù2c2£¬²»ºÏÌâÒ⣬µ±m=2ʱ£¬T2=2c3£¬ÊʺÏÌâÒ⣮
µ±m¡Ý3ʱ£¬Èôcm+1=2£¬ÔòTm¡Ù2cm+1Ò»¶¨²»ÊʺÏÌâÒ⣬
´Ó¶øcm+1±ØÊÇÊýÁÐ{bn}ÖеÄijһÏîbk+1£¬
ÔòTm=b1+2+2+b2+2+2+2+2+b3+2+¡­+2+b4+2+¡­+b5+2+¡­+b6+¡­+bk-1+2+¡­+bk£¬
=£¨2+22+23+¡­+2k£©+2£¨2+4+¡­+2k£©
=2¡Á£¨2k-1£©+k£¨2+2k£©=2k+1+2k2+2k-2£¬
ÓÖ2cm+1=2bk+1=2¡Á2k+1£¬
¡à2k+1+2k2+2k-2=2¡Á2k+1£¬¼´2k-k2-k+1=0£¬¡à2k+1=k2+k£¬
¡ß2k+1ÎªÆæÊý£¬k2+k=k£¨k+1£©ÎªÅ¼Êý£¬¡àÉÏʽÎ޽⣮
¼´µ±m¡Ý3ʱ£¬Tm¡Ù2cm+1£¬
×ÛÉÏÖª£¬Âú×ãÌâÒâµÄÕýÕûÊýÖ»ÓÐm=2£®
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁС¢µÈ±ÈÊýÁеÄͨÏîºÍÇóºÍ£¬¿¼²éÊýÁеÄÇóºÍ·½·¨£º·Ö×éÇóºÍ£¬Í¬Ê±¿¼²éÂß¼­ÍÆÀíÄÜÁ¦£¬ÊôÓÚ×ÛºÏÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ϱíÊÇÔ·ÝxÓëyÓõçÁ¿£¨µ¥Î»£ºÍò¶È£©Ö®¼äµÄÒ»×éÊý¾Ý£º
x23456
y34689
£¨1£©»­³öÉ¢µãͼ£»
£¨2£©Èç¹ûy¶ÔxÓÐÏßÐÔÏà¹Ø¹ØÏµ£¬Ç󻨹鷽³Ì£»
£¨3£©ÅжϱäÁ¿ÓëÖ®¼äÊÇÕýÏà¹Ø»¹ÊǸºÏà¹Ø£»
£¨4£©Ô¤²â12Ô·ݵÄÓõçÁ¿£®¸½£ºÏßÐԻع鷽³Ìy=bx+aÖУ¬b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
£¬a=
.
y
-b
.
x
£¬ÆäÖÐ
.
x
£¬
.
y
ΪÑù±¾Æ½¾ùÖµ£¬ÏßÐԻع鷽³ÌÒ²¿ÉдΪ
y
=
b
x+
a
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªx
1
2
+x-
1
2
=3£¬Çó
x
3
2
+x-
3
2
-3
x2+x-2-2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÈýÀâ×¶P-ABCÖУ¬PA=PB=PC=AC=4£¬AB=BC=2
2
£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæABC¡ÍÆ½ÃæAPC£»
£¨¢ò£©ÇóÖ±ÏßPAÓëÆ½ÃæPBCËù³É½ÇµÄÕýÏÒÖµ£»
£¨¢ó£©Èô¶¯µãMÔÚµ×ÃæÈý½ÇÐÎABCÉÏ£¬¶þÃæ½ÇM-PA-CµÄ´óСΪ
¦Ð
6
£¬ÇóBMµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôSnÊǹ«²î²»ÎªÁãµÄµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒS1¡¢S2¡¢S4³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐS1¡¢S2¡¢S4µÄ¹«±È£»
£¨2£©ÈôS2=4£¬Çó{an}µÄͨÏʽ£»
£¨3£©ÇóÊýÁÐ{an•2n}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªsinx+siny=
2
3
£¬Çó
2
3
+siny-cos2xµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨2sinx£¬cosx£©£¬
b
=£¨
3
cosx£¬2cosx£©£¬¶¨Ò庯Êýf£¨x£©=
a
b

£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷¼õÇø¼ä£»
£¨3£©Çó³öº¯Êýf£¨x£©ÔÚ[-
¦Ð
6
£¬
¦Ð
3
]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
2
cos£¨
x
2
+
¦Ð
4
£©+1
£¨1£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôx¡Ê[0£¬2¦Ð]£¬Çóf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ
3
2
£¬½¹µãµ½ÍÖÔ²ÉϵãµÄ×î¶Ì¾àÀëΪ2-
3
£¬ÇóÍÖÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸