精英家教网 > 高中数学 > 题目详情
4.已知直线l1:mx+8y+n=0和l2:2x+my-1=0.则“m=4且n≠-2”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

分析 根据直线平行的等价条件求出m,n的关系结合充分条件和必要条件的定义进行判断即可.

解答 解:若m=0,则两条直线方程为8y+n=0,2x-1=0,此时两直线垂直,不满足l1∥l2
若m≠0,若l1∥l2
则$\frac{m}{2}=\frac{8}{m}$≠$\frac{n}{-1}$,
由$\frac{m}{2}=\frac{8}{m}$得m2=16,解得m=4或m=-4,
当m=4时,$\frac{n}{-1}$≠$\frac{4}{2}$,即n≠-2,
当m=-4时,$\frac{n}{-1}$≠-$\frac{4}{2}$,即n≠2,
即若l1∥l2,则m=4且n≠-2或m=-4且n≠2,
故m=4且n≠-2”是“l1∥l2”的充分不必要条件,
故选:A

点评 本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=1,a2=3,且满足$\frac{{a}_{n+2}}{n+2}$=$\frac{{a}_{n}}{n}$+$\frac{3}{{2}^{n+1}}$.
(1)记bn=$\frac{{a}_{n}}{n}$,求{bn}的通项公式;
(2)求数列{an}的前n项和Sn
(3)证明不等式Sn-n(n+1)≤-1,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)上一点P引圆O:x2+y2=b2的两条切线PA、PB,切点为A、B,PA、PB与x、y轴分别相交于M、N两点.
(1)若椭圆C的短轴长为8,且$\frac{{a}^{2}}{|OM{|}^{2}}$+$\frac{{b}^{2}}{|ON{|}^{2}}$=$\frac{25}{16}$,求此椭圆的方程;
(2)试问椭圆C上是否存在满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=0的点P?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-a|-$\frac{9}{x}$+a,x∈[1,6],a∈R.,当a∈(1,6)时,求函数f(x)的最大值的表达式M(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=f(x)的图象与直线x=a,x=b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积,已知函数y=sinnx在[0,$\frac{π}{n}$]上的面积为$\frac{2}{n}$(n∈N*),则函数y=sin(3x-π)+1在[$\frac{π}{3}$,$\frac{4π}{3}$]上的面积为(  )
A.π+$\frac{8}{3}$B.π+2C.π+1D.π+$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2
(1)求函数的最小正周期;
(2)计算f(0)+f(1)+f(2)+…+f(2015).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有A、B、C型高级电脑各一台,甲、乙、丙、丁四个操作人员的技术等次不同,甲、乙会操作3种型号的电脑,丙不能操作C型电脑,而丁只会操作A型电脑,今从这4个操作人员中选3人分别去操作以上电脑,则不同的选派方法有8种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xlnx,若x>1,试判断方程f(x)=(x-1)(ax-a-1)的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.把正整数排成如图(a)的三角形数阵,然后擦去第偶数行中的所有奇数,第奇数行中的所有偶数,可得如图(b)三角形数阵,现将图(b)中的正整数安小到大的顺序构成一个数列{an},若ak=2015,则k=1030.

查看答案和解析>>

同步练习册答案