精英家教网 > 高中数学 > 题目详情
8.“a=-2”是“直线(a+2)x+3ay+1=0与直线(a-2)x+(a+2)y-3=0相互垂直”的(  )条件.
A.充要B.充分非必要
C.必要非充分D.既非充分也非必要

分析 对a分类讨论,利用直线相互垂直的充要条件即可得出.

解答 解:a=-2时,两条直线分别化为:-6y+1=0,-4x-3=0,此时两条直线相互垂直,满足条件;
a=0时,两条直线分别化为:2x+1=0,-2x+2y-3=0,此时两条直线不垂直,舍去;
a≠-2或0时,由“直线(a+2)x+3ay+1=0与直线(a-2)x+(a+2)y-3=0相互垂直”,可得:-$\frac{a+2}{3a}$×$(-\frac{a-2}{a+2})$=-1,解得a=$\frac{1}{2}$.
∴“a=-2”是“直线(a+2)x+3ay+1=0与直线(a-2)x+(a+2)y-3=0相互垂直”的充分不必要条件.
故选:B.

点评 本题考查了直线相互垂直的充要条件、简易逻辑的判定方法,考查了分类讨论方法、推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若函数$f(x)=\sqrt{x-2}$,则函数y=f(2x)的定义域是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在同一平面内,下列说法:
①若动点P到两个定点A,B的距离之和是定值,则点P的轨迹是椭圆;
②若动点P到两个定点A,B的距离之差的绝对值是定值,则点P的轨迹是双曲线;
③若动点P到定点A的距离等于P到定直线的距离,则点P的轨迹是抛物线;
④若动点P到两个定点A,B的距离之比是定值,则点P的轨迹是圆.
其中错误的说法个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示程序,若P=0.9,则输出n值的二进制表示为(  )
A.11(2)B.100(2)C.101(2)D.110(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线方程是 y=$\frac{{\sqrt{5}}}{2}$x,则该双曲线的离心率等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a>0,b>0,且函数f(x)=6x3-ax2-2bx+2在x=1处有极值,若t=ab,则t的最大值为(  )
A.$\frac{81}{4}$B.6C.$\frac{81}{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x-2)2+y2=1相内切,记圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,|$\overrightarrow{AC}$|=1,|$\overrightarrow{CA}$-$\overrightarrow{CB}$|=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,\overrightarrow a•({\overrightarrow b-\overrightarrow a})=1$,则$|{\overrightarrow a-\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{7}$D.$\sqrt{23}$

查看答案和解析>>

同步练习册答案