精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,\overrightarrow a•({\overrightarrow b-\overrightarrow a})=1$,则$|{\overrightarrow a-\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{7}$D.$\sqrt{23}$

分析 由已知的等式求出向量$\overrightarrow a,\overrightarrow b$的数量积,然后通过求$|{\overrightarrow a-\overrightarrow b}|$2再求模.

解答 解:因为向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,\overrightarrow a•({\overrightarrow b-\overrightarrow a})=1$,所以$\overrightarrow{a}•\overrightarrow{b}=1+{\overrightarrow{a}}^{2}=5$,
则$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{4+9-5}=2\sqrt{2}$;
故选B

点评 本题考查了平面向量数量积公式的运用以及模的计算;属于常规题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.“a=-2”是“直线(a+2)x+3ay+1=0与直线(a-2)x+(a+2)y-3=0相互垂直”的(  )条件.
A.充要B.充分非必要
C.必要非充分D.既非充分也非必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一组数据X1,X2,…,Xn的平均数是3,方差是5,则数据3X1+2,3X2+2,…,3Xn+2 的平均数和方差分别是(  )
A.11,45B.5,45C.3,5D.5,15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下面几种推理中是演绎推理的为(  )
A.高二年级有21个班,1班51人,2班53人,三班52人,由此推测各班都超过50人
B.猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N+
C.半径为r的圆的面积S=πr2,则单位圆的面积S=π
D.由平面三角形的性质,推测空间四面体性质

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果角α的终边经过点$({-\frac{{\sqrt{3}}}{2},\frac{1}{2}})$,那么tanα的值是(  )
A.$-\sqrt{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.甲乙丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,若开始时球在甲手中,则经过三次传球后,球传回甲手中的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图的程序框图,则输出的n为(  )
A.9B.11C.13D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某同学先后投掷一枚骰子两次,所得的点数分别记为x,y,则点(x,y)落在函数y=2x的图象上的概率为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在圆C中,弦AB的长为4,则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.8B.-8C.4D.-4

查看答案和解析>>

同步练习册答案